Home
Class 12
MATHS
The value of int(xtanxsecx)/((tanx-x)^(2...

The value of `int(xtanxsecx)/((tanx-x)^(2))dx` is equal to

A

`(1)/(sinx-xcosx)+c`

B

`(1)/(xcosx-sinx)+c`

C

`(1)/(xsinx-cosx)+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x \tan x \sec x}{(\tan x - x)^2} \, dx, \] we will follow a step-by-step approach. ### Step 1: Rewrite the integrand We start by rewriting the integrand in a more manageable form. Recall that \[ \tan x = \frac{\sin x}{\cos x} \quad \text{and} \quad \sec x = \frac{1}{\cos x}. \] Thus, we can rewrite the integrand as: \[ I = \int \frac{x \cdot \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x}}{(\frac{\sin x}{\cos x} - x)^2} \, dx = \int \frac{x \sin x}{\cos^2 x \left(\frac{\sin x - x \cos x}{\cos x}\right)^2} \, dx. \] ### Step 2: Simplify the denominator Now, we simplify the denominator: \[ \frac{\sin x - x \cos x}{\cos x} = \sin x - x \cos x. \] Thus, we can rewrite the integral as: \[ I = \int \frac{x \sin x}{\cos^2 x (\sin x - x \cos x)^2} \, dx. \] ### Step 3: Substitution Next, we will use substitution. Let \[ t = \sin x - x \cos x. \] Now, we differentiate \(t\) with respect to \(x\): \[ dt = \left(\cos x - (-x \sin x + \cos x)\right) dx = (\cos x + x \sin x - \cos x) \, dx = x \sin x \, dx. \] Thus, we have: \[ x \sin x \, dx = dt. \] ### Step 4: Substitute in the integral Now, substituting \(t\) into the integral gives us: \[ I = \int \frac{dt}{t^2}. \] ### Step 5: Integrate The integral of \(t^{-2}\) is: \[ \int t^{-2} \, dt = -\frac{1}{t} + C. \] ### Step 6: Substitute back Now we substitute back \(t\): \[ I = -\frac{1}{\sin x - x \cos x} + C. \] ### Step 7: Final answer To express it in a more standard form, we can multiply the numerator and denominator by -1: \[ I = \frac{1}{x \cos x - \sin x} + C. \] ### Conclusion Thus, the final answer is: \[ \int \frac{x \tan x \sec x}{(\tan x - x)^2} \, dx = \frac{1}{x \cos x - \sin x} + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

Write a value of int(sec^2x)/((5+tanx)^4)\ dx

The value of int(dx)/(x+sqrt(a^(2)-x^(2))) , is equal to

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

The value of int _(0)^(infty)e-^(a^(2)x^(2)) dx is equal to

Evaluate int(tanx)/(secx+tanx)dx

Evaluate: int(tanx)/(a+btan^2x)dx

The value of int_(0)^(pi//2)ln|tanx+cotx| dx is equal to :

int(cos4x-1)/(cotx-tanx)dx is equal to