Home
Class 12
MATHS
If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan...

If `int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c`, then k is equal to

A

1

B

2

C

3

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral and find the value of \( k \), we start with the expression: \[ \int \frac{x^2 - 1}{(x^4 + 3x^2 + 1) \tan^{-1}\left(\frac{x^2 + 1}{x}\right)} \, dx = k \log\left|\frac{\tan^{-1}(x^2 + 1)}{x}\right| + c \] ### Step 1: Simplify the Integral We can simplify the integral by factoring out \( x^2 \) from the numerator and the denominator. \[ \int \frac{x^2(1 - \frac{1}{x^2})}{x^2(x^2 + 3 + \frac{1}{x^2}) \tan^{-1}\left(\frac{x^2 + 1}{x}\right)} \, dx \] This simplifies to: \[ \int \frac{1 - \frac{1}{x^2}}{x^2 + 3 + \frac{1}{x^2}} \cdot \frac{1}{\tan^{-1}\left(\frac{x^2 + 1}{x}\right)} \, dx \] ### Step 2: Rewrite the Denominator Next, we can rewrite the denominator: \[ x^2 + 3 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 + 2 \] ### Step 3: Use Substitution Let: \[ t = \tan^{-1}\left(\frac{x^2 + 1}{x}\right) \] Differentiating \( t \): \[ \frac{dt}{dx} = \frac{1}{1 + \left(\frac{x^2 + 1}{x}\right)^2} \cdot \left(\frac{d}{dx}\left(\frac{x^2 + 1}{x}\right)\right) \] Calculating \( \frac{d}{dx}\left(\frac{x^2 + 1}{x}\right) \): \[ \frac{d}{dx}\left(\frac{x^2 + 1}{x}\right) = \frac{(2x)(x) - (x^2 + 1)(1)}{x^2} = \frac{x^2 - 1}{x^2} \] Thus, \[ \frac{dt}{dx} = \frac{x^2 - 1}{x^2(1 + \left(\frac{x^2 + 1}{x}\right)^2)} \] ### Step 4: Substitute Back into the Integral Substituting \( dt \) into the integral gives us: \[ \int \frac{dt}{t} \] ### Step 5: Integrate The integral of \( \frac{1}{t} \) is: \[ \log|t| + C \] Substituting back for \( t \): \[ \log\left|\tan^{-1}\left(\frac{x^2 + 1}{x}\right)\right| + C \] ### Step 6: Compare with the Given Expression Now, we compare: \[ \log\left|\tan^{-1}\left(\frac{x^2 + 1}{x}\right)\right| + C = k \log\left|\frac{\tan^{-1}(x^2 + 1)}{x}\right| + c \] From the comparison, we can see that: \[ k = 1 \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int(x^2-1)/((x^4+3x^2+1)tan^(-1)(x+1/x))dx

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to

int 5^(x+tan^(-1)x)*((x^(2)+2)/(x^(2)+1))dx .

Evaluate: int_(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , then

int 1/((1+x^2)tan^(-1)x)dx

If tan^(- 1)\ 1/4+tan^(- 1)\ 2/9=1/2cos^(- 1)x then x is equal to

int(1)/((1+x^(2))sqrt(tan^(-1)x))dx=?