Home
Class 12
MATHS
If int\ x ln(1+1/x)\ dx = p(x)\ ln(1+1/x...

If `int\ x ln(1+1/x)\ dx = p(x)\ ln(1+1/x)+1/2 x - 1/2 ln(1+x) + c,` c being arbitarary constant, then

A

`p(x)=(1)/(2)x^(2)`

B

`p(x)=0`

C

`p(x)=1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \ln\left(1 + \frac{1}{x}\right) dx \), we will use integration by parts. Let's go through the steps in detail. ### Step 1: Set up integration by parts We will use the formula for integration by parts: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = \ln\left(1 + \frac{1}{x}\right) \) - \( dv = x \, dx \) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{d}{dx} \ln\left(1 + \frac{1}{x}\right) \, dx = \frac{1}{1 + \frac{1}{x}} \cdot \left(-\frac{1}{x^2}\right) \, dx = -\frac{1}{x^2 + x} \, dx \] - Integrate \( dv \): \[ v = \int x \, dx = \frac{x^2}{2} \] ### Step 3: Apply integration by parts Now substitute \( u \), \( v \), \( du \), and \( dv \) into the integration by parts formula: \[ \int x \ln\left(1 + \frac{1}{x}\right) dx = \frac{x^2}{2} \ln\left(1 + \frac{1}{x}\right) - \int \frac{x^2}{2} \left(-\frac{1}{x^2 + x}\right) dx \] ### Step 4: Simplify the integral The integral simplifies to: \[ \int x \ln\left(1 + \frac{1}{x}\right) dx = \frac{x^2}{2} \ln\left(1 + \frac{1}{x}\right) + \frac{1}{2} \int \frac{x^2}{x^2 + x} dx \] Now, simplify \( \frac{x^2}{x^2 + x} = 1 - \frac{x}{x^2 + x} \): \[ \int x \ln\left(1 + \frac{1}{x}\right) dx = \frac{x^2}{2} \ln\left(1 + \frac{1}{x}\right) + \frac{1}{2} \left( \int 1 \, dx - \int \frac{x}{x^2 + x} dx \right) \] ### Step 5: Evaluate the remaining integrals 1. The first integral: \[ \int 1 \, dx = x \] 2. The second integral can be simplified using partial fractions: \[ \int \frac{x}{x^2 + x} dx = \int \frac{1}{x + 1} dx = \ln|x + 1| \] ### Step 6: Combine results Putting it all together: \[ \int x \ln\left(1 + \frac{1}{x}\right) dx = \frac{x^2}{2} \ln\left(1 + \frac{1}{x}\right) + \frac{1}{2} \left( x - \ln|x + 1| \right) + C \] ### Step 7: Final expression Thus, we have: \[ \int x \ln\left(1 + \frac{1}{x}\right) dx = \frac{x^2}{2} \ln\left(1 + \frac{1}{x}\right) + \frac{1}{2} x - \frac{1}{2} \ln(x + 1) + C \] ### Step 8: Identify \( p(x) \) Comparing with the given expression: \[ p(x) \ln\left(1 + \frac{1}{x}\right) + \frac{1}{2} x - \frac{1}{2} \ln(x + 1) + C \] we find that: \[ p(x) = \frac{x^2}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int ln(1+x)^(1+x)dx

int log ( 1 + x^(2)) dx

int(tan(1+log x))/(x) dx

If int x log (1+x^(2))dx= phi (x) log (1+x^(2))+x(Psi)+C , then

int_(0)^(1)x log (1+2 x)dx

If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(2)) +d. then (where d is arbitrary constant)

If intxlog(1+x^(2))dx=A(x).log(1+x^(2))+B(x)+c , then

If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(3)) +d. then (where d is arbitrary constant)

If int (x^4 + 1)/(x(x^2+1)^2)\ dx = A ln |x| +B/(1+x^2)+C, then A+B equals to :

If intx log (1+(1)/(x))dx =f(x).log_(e)(x+1)+g(x)log_(e)x+Lx+C , then