Home
Class 12
MATHS
If int((2x+1)dx)/(x^(4)+2x^(3)+x^(2)-1)=...

If `int((2x+1)dx)/(x^(4)+2x^(3)+x^(2)-1)=Aln|(x^(2)+x+1)/(x^(2)+x-1)|+C`, then

A

A=1

B

A=1/2

C

A=-1/2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{2x + 1}{x^4 + 2x^3 + x^2 - 1} \, dx, \] we will follow a systematic approach. ### Step 1: Factor the Denominator First, we need to simplify the denominator \(x^4 + 2x^3 + x^2 - 1\). We can factor out \(x^2\) from the first three terms: \[ x^4 + 2x^3 + x^2 - 1 = x^2(x^2 + 2x + 1) - 1 = x^2(x + 1)^2 - 1. \] Now we can recognize this as a difference of squares: \[ x^2(x + 1)^2 - 1^2 = (x(x + 1) - 1)(x(x + 1) + 1). \] Thus, we can rewrite the denominator as: \[ (x(x + 1) - 1)(x(x + 1) + 1). \] ### Step 2: Substitute Variables Next, we will use the substitution \(t = x^2 + x\). Then, we differentiate: \[ \frac{dt}{dx} = 2x + 1 \implies dt = (2x + 1)dx. \] This allows us to replace \(2x + 1 \, dx\) in the integral: \[ I = \int \frac{dt}{(t + 1)(t - 1)}. \] ### Step 3: Partial Fraction Decomposition Now we will perform partial fraction decomposition on the integrand: \[ \frac{1}{(t + 1)(t - 1)} = \frac{A}{t + 1} + \frac{B}{t - 1}. \] Multiplying through by the denominator \((t + 1)(t - 1)\) gives: \[ 1 = A(t - 1) + B(t + 1). \] Expanding and rearranging, we get: \[ 1 = (A + B)t + (B - A). \] Setting coefficients equal, we have: 1. \(A + B = 0\) 2. \(B - A = 1\) From the first equation, \(B = -A\). Substituting into the second equation: \[ -A - A = 1 \implies -2A = 1 \implies A = -\frac{1}{2}, \quad B = \frac{1}{2}. \] Thus, we can rewrite the integral: \[ I = \int \left(-\frac{1}{2(t + 1)} + \frac{1}{2(t - 1)}\right) dt. \] ### Step 4: Integrate Now we can integrate term by term: \[ I = -\frac{1}{2} \int \frac{1}{t + 1} dt + \frac{1}{2} \int \frac{1}{t - 1} dt. \] This gives us: \[ I = -\frac{1}{2} \ln |t + 1| + \frac{1}{2} \ln |t - 1| + C. \] ### Step 5: Combine Logarithms Using properties of logarithms, we can combine these: \[ I = \frac{1}{2} \ln \left| \frac{t - 1}{t + 1} \right| + C. \] ### Step 6: Substitute Back Substituting back \(t = x^2 + x\): \[ I = \frac{1}{2} \ln \left| \frac{x^2 + x - 1}{x^2 + x + 1} \right| + C. \] ### Conclusion Comparing with the given expression \(A \ln \left| \frac{x^2 + x + 1}{x^2 + x - 1} \right| + C\), we find: \[ A = \frac{1}{2}. \] Thus, the final answer is: \[ A = \frac{1}{2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int (4x^(2) +x+1)/(x^(3) -1) dx=?

int(2x+1)/(x^(2)+4x-5)dx

int_(0)^(1) (1)/(x^(2) +2x+3)dx

(5) int(x^(2)-1)/(x(2x-1))dx

(5) int(x^(2)-1)/(x(2x-1))dx

Evaluate: int(2x+1)/(x^4+2x^3+x^2-1)dx

Evaluate: int(2x+1)/(x^4+2x^3+x^2-1)dx

int (x+1)/(2x^2+3x+4) dx

int(3x+1)/(2x^(2)+x-1)dx

int (x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1))dx=