Home
Class 12
MATHS
int(cos2theta)/((sintheta+costheta)^(2))...

`int(cos2theta)/((sintheta+costheta)^(2))d""theta` is equal to

A

`(cos2theta)/(sintheta+costheta)+c`

B

`log|sintheta+costheta)+c`

C

`log|sintheta-costheta|+c`

D

`log(sintheta+costheta)^(2)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\cos 2\theta}{(\sin \theta + \cos \theta)^2} d\theta, \] we will follow a systematic approach. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\cos 2\theta}{(\sin \theta + \cos \theta)^2} d\theta. \] ### Step 2: Expand the Denominator We can expand the denominator: \[ (\sin \theta + \cos \theta)^2 = \sin^2 \theta + 2\sin \theta \cos \theta + \cos^2 \theta. \] Using the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\), we have: \[ (\sin \theta + \cos \theta)^2 = 1 + 2\sin \theta \cos \theta. \] ### Step 3: Substitute for \(\cos 2\theta\) Recall the double angle formula: \[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta = 1 - 2\sin^2 \theta. \] ### Step 4: Change of Variables Let \(t = 1 + \sin 2\theta\). Then, differentiate: \[ \frac{d}{d\theta}(1 + \sin 2\theta) = 2\cos 2\theta. \] This implies: \[ dt = 2\cos 2\theta d\theta \quad \Rightarrow \quad d\theta = \frac{dt}{2\cos 2\theta}. \] ### Step 5: Substitute in the Integral Now substitute \(t\) into the integral: \[ I = \int \frac{\cos 2\theta}{t^2} \cdot \frac{dt}{2\cos 2\theta} = \frac{1}{2} \int \frac{dt}{t^2}. \] ### Step 6: Integrate The integral of \(\frac{1}{t^2}\) is: \[ \int \frac{dt}{t^2} = -\frac{1}{t} + C. \] Thus, \[ I = \frac{1}{2} \left(-\frac{1}{t}\right) + C = -\frac{1}{2t} + C. \] ### Step 7: Substitute Back Substituting back for \(t\): \[ I = -\frac{1}{2(1 + \sin 2\theta)} + C. \] ### Step 8: Final Expression Using the identity \(1 + \sin 2\theta = (\sin \theta + \cos \theta)^2\), we can rewrite the integral as: \[ I = -\frac{1}{2(\sin \theta + \cos \theta)^2} + C. \] ### Conclusion Thus, the final answer is: \[ I = \frac{1}{2} \ln |\sin \theta + \cos \theta| + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int(1+sin2theta)/(sintheta-costheta)d""theta is equal to

3(sintheta-costheta)^4+6(sintheta+costheta)^2+4(sin^6theta+cos^6theta) is equal to 11 (b) 12 (c) 13 (d) 14

If cos2theta=0 , then |(0,costheta,sin theta),(cos theta, sin theta, 0),(sin theta, 0, cos theta)|^(2) is equal to…………

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

If sintheta+sin^(2)theta = 1 then cos^(2)theta+cos^(4)theta is equal to :

(sin5theta+sin2theta-sin theta)/(cos5theta+2cos3theta+2cos^(2)theta+costheta) is equal to

lim_(trarr(pi/2)^(-))int_(0)^(t) tanthetasqrt(costheta)ln(costheta)d theta is equal to :

If int(sintheta-costheta)/((sintheta+costheta)sqrt(sinthetacostheta+sin^(2)thetacos^(2)theta))d theta = "cosec"^(_1)(f(theta))+C , then

3(sintheta-costheta)^(4)+6(sintheta+costheta)^(2)+4(sin^(6)theta+cos^(6)theta)=?

The value of the integral int_(0)^(pi//2)(3sqrt(costheta))/((sqrt(costheta)+sqrt(sintheta))^5)d theta equals ............