Home
Class 12
MATHS
4 int (sqrt(a^(6)+x^(8)))/(x) dx is equa...

`4 int (sqrt(a^(6)+x^(8)))/(x) dx` is equal to

A

`sqrt(a^(6)+x^(8))+(a^(3))/(2)ln|(sqrt(a^(6)+x^(6))-a^(3))/(sqrt(a^(6)+x^(8))-a^(3))|+c`

B

`a^(6)ln|(sqrt(a^(6)+x^(6))-a^(3))/(sqrt(a^(6)+x^(8))+a^(3))|+c`

C

`sqrt(a^(6)+x^(8))+(a^(3))/(2)ln|(sqrt(a^(6)+x^(6))-a^(3))/(sqrt(a^(6)+x^(8))+a^(3))|+c`

D

`a^(6)ln|(sqrt(a^(6)+x^(6))-a^(3))/(sqrt(a^(6)+x^(8))+a^(3))|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( 4 \int \frac{\sqrt{a^6 + x^8}}{x} \, dx \), we can follow these steps: ### Step 1: Set up the integral Let \( I = 4 \int \frac{\sqrt{a^6 + x^8}}{x} \, dx \). ### Step 2: Substitution We will use the substitution \( t^2 = a^6 + x^8 \). Differentiating both sides gives: \[ 2t \, dt = 8x^7 \, dx \quad \Rightarrow \quad dx = \frac{t \, dt}{4x^7} \] ### Step 3: Rewrite the integral Substituting \( dx \) into the integral, we have: \[ I = 4 \int \frac{\sqrt{t^2}}{x} \cdot \frac{t \, dt}{4x^7} \] This simplifies to: \[ I = \int \frac{t^2}{x^8} \, dt \] ### Step 4: Express \( x^8 \) in terms of \( t \) From our substitution \( t^2 = a^6 + x^8 \), we can express \( x^8 \) as: \[ x^8 = t^2 - a^6 \] Thus, the integral becomes: \[ I = \int \frac{t^2}{t^2 - a^6} \, dt \] ### Step 5: Separate the integral We can separate the integral: \[ I = \int \left( 1 + \frac{a^6}{t^2 - a^6} \right) dt \] This gives us: \[ I = \int dt + a^6 \int \frac{1}{t^2 - a^6} \, dt \] ### Step 6: Integrate The first integral is straightforward: \[ \int dt = t \] The second integral can be solved using the formula for the integral of \( \frac{1}{x^2 - a^2} \): \[ \int \frac{1}{x^2 - a^2} \, dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C \] So we have: \[ I = t + a^6 \cdot \frac{1}{2\sqrt{a^6}} \ln \left| \frac{t - \sqrt{a^6}}{t + \sqrt{a^6}} \right| + C \] ### Step 7: Substitute back for \( t \) Recall that \( t = \sqrt{a^6 + x^8} \), so substituting back gives: \[ I = \sqrt{a^6 + x^8} + \frac{a^6}{2\sqrt{a^6}} \ln \left| \frac{\sqrt{a^6 + x^8} - \sqrt{a^6}}{\sqrt{a^6 + x^8} + \sqrt{a^6}} \right| + C \] ### Final Answer Thus, the final answer for the integral \( 4 \int \frac{\sqrt{a^6 + x^8}}{x} \, dx \) is: \[ I = \sqrt{a^6 + x^8} + \frac{a^6}{2\sqrt{a^6}} \ln \left| \frac{\sqrt{a^6 + x^8} - \sqrt{a^6}}{\sqrt{a^6 + x^8} + \sqrt{a^6}} \right| + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int(dx)/(x+sqrt(a^(2)-x^(2))) , is equal to

int sqrt(x)(1+x^(1//3))^(4)dx " is equal to "

int(cos sqrt(x))/( sqrt(x)) dx is equal to

int(x+sqrt(x+1))/(x+2) dx is equal to:

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

The value of int_(3)^(6)(sqrt((36-x^(2))^(3)))/(x^(4))dx is equal to

int_(a)^(b) sqrt((x-a)/(b-x))dx is equal to

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int(x^(4)+1)/(x^(6)+1)dx is equal to

int(x^3-x)/(1+x^6)dx is equal to