Home
Class 12
MATHS
int (dx)/(x^(2)(x^(4)+1)^(3/4))is...

`int (dx)/(x^(2)(x^(4)+1)^(3/4))is`

A

`-((1)/(x^(4))+1)^(3//4)+c`

B

`(x^(-4)+1)^(3//4)+c`

C

`-((1)/x^(4)+1)^(3//4)+c`

D

`-((1)/x^(4)+1)^(1//4)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{x^2 (x^4 + 1)^{3/4}}, \] we will follow these steps: ### Step 1: Simplify the Denominator We can factor out \(x^4\) from the denominator: \[ I = \int \frac{dx}{x^2 (x^4 + 1)^{3/4}} = \int \frac{dx}{x^2 \left[ x^4 \left(1 + \frac{1}{x^4}\right)\right]^{3/4}}. \] This simplifies to: \[ I = \int \frac{dx}{x^2 x^{3} \left(1 + \frac{1}{x^4}\right)^{3/4}} = \int \frac{dx}{x^{5} \left(1 + \frac{1}{x^4}\right)^{3/4}}. \] ### Step 2: Substitute Let \[ t = 1 + \frac{1}{x^4}. \] Then, differentiating both sides gives: \[ \frac{dt}{dx} = -\frac{4}{x^5} \implies dx = -\frac{x^5}{4} dt. \] ### Step 3: Substitute into the Integral Now substituting \(dx\) in the integral: \[ I = \int \frac{-\frac{x^5}{4} dt}{x^{5} \left(t\right)^{3/4}} = -\frac{1}{4} \int \frac{dt}{t^{3/4}}. \] ### Step 4: Integrate Now we can integrate: \[ -\frac{1}{4} \int t^{-3/4} dt = -\frac{1}{4} \cdot \frac{t^{1/4}}{1/4} + C = -t^{1/4} + C. \] ### Step 5: Substitute Back Now substitute \(t\) back in terms of \(x\): \[ I = -\left(1 + \frac{1}{x^4}\right)^{1/4} + C. \] ### Final Answer Thus, the final result for the integral is: \[ I = -\left(1 + \frac{1}{x^4}\right)^{1/4} + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : int(dx)/(x^(2)(x^(4) + 1)^((3)/(4)))

"The integral " int(dx)/(x^(2)(x^(4)+1)^(3//4))" equals"

Evaluate: int(dx)/(x^2(x^4+1)^(3/4))

Evaluate: int(dx)/(x^2(x^4+1)^(3/4))

Evaluate: int(dx)/(x^2(x^4+1)^(3/4))

int1/(x^2(x^4+1)^(3/4))dx

Evaluate: int(dx)/(x^2(x^4+1)^(3/4)) (A) - ( 1 + 1/x^4)^(1/4) + c (B) ( 1 + 1/x^4)^(1/4) + c (C) - ( 1 - 1/x^4)^(1/4) + c (D) - ( 1 +1/x^4)^(1/4) + c

Evaluate: int(dx)/(x^2(x^4+1)^(3/4)) (A) - ( 1 + 1/x^4)^(1/4) + c (B) ( 1 + 1/x^4)^(1/4) + c (C) - ( 1 - 1/x^4)^(1/4) + c (D) - ( 1 +1/x^4)^(1/4) + c

int1/(x^2(x^4+1)^(3/4)) dx

int (x+1)/(2x^2+3x+4) dx