Home
Class 12
MATHS
inttan^(-1)alphatanxdalpha equals...

`inttan^(-1)alphatanxdalpha` equals

A

`tan^(-1)alpha,secx+c`

B

`tan^(-1)alpha.log(secx)+c`

C

`tanx{alphatan^(-1)alpha-(1)/(2)log(1+alpha^(2))}+c`

D

`tanalpha(xtan^(-1)x-(1)/(2)log(1+x^(2)))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \tan^{-1}(\alpha) \tan(x) \, d\alpha \), we can use integration by parts. Let's go through the steps systematically. ### Step 1: Identify the Parts We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Here, we can let: - \( u = \tan^{-1}(\alpha) \) (which we will differentiate) - \( dv = \tan(x) \, d\alpha \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now we differentiate \( u \) and integrate \( dv \): - \( du = \frac{1}{1 + \alpha^2} \, d\alpha \) - \( v = \tan(x) \cdot \alpha \) ### Step 3: Apply Integration by Parts Now we apply the integration by parts formula: \[ I = \tan^{-1}(\alpha) \cdot \tan(x) \cdot \alpha - \int \tan(x) \cdot \alpha \cdot \frac{1}{1 + \alpha^2} \, d\alpha \] ### Step 4: Simplify the Integral The remaining integral can be simplified: \[ \int \tan(x) \cdot \frac{\alpha}{1 + \alpha^2} \, d\alpha \] To solve this integral, we can use a substitution. Let: - \( t = 1 + \alpha^2 \) - Then, \( dt = 2\alpha \, d\alpha \) or \( d\alpha = \frac{dt}{2\alpha} \) ### Step 5: Change of Variables Substituting \( \alpha = \sqrt{t - 1} \): \[ \int \tan(x) \cdot \frac{\sqrt{t - 1}}{t} \cdot \frac{dt}{2\sqrt{t - 1}} = \frac{1}{2} \int \frac{\tan(x)}{t} \, dt \] This integral is: \[ \frac{1}{2} \tan(x) \ln|t| + C = \frac{1}{2} \tan(x) \ln|1 + \alpha^2| + C \] ### Step 6: Combine Results Now we substitute back into our expression for \( I \): \[ I = \tan^{-1}(\alpha) \tan(x) \cdot \alpha - \frac{1}{2} \tan(x) \ln|1 + \alpha^2| + C \] ### Final Result Thus, the final result is: \[ I = \alpha \tan^{-1}(\alpha) \tan(x) - \frac{1}{2} \tan(x) \ln(1 + \alpha^2) + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

1 J equals to

inttan^2xdx

inttan^(-1)sqrt(x)\ dx is equal to

I=inttan^(2)(2theta)d""theta is equal to

inttan^2(2x-3)\ dx

inttan2xtan5xtan7xdx

The value of inttan^(3)2xsec2x dx is equal to:

Evaluate: inttan(x-theta)tan(x+theta)tan2x\ dx

1^(@) is approximately equal is

inttan^5thetasec^4d theta