Home
Class 12
MATHS
l(1)=int2^(x)dx=p(x)+c(1)andl(2)=int((1)...

`l_(1)=int2^(x)dx=p(x)+c_(1)andl_(2)=int((1)/(2))^(x)dx=m(x)+c_(1)` then p(x)-m(x) is equal to

A

`{log_(e)(2)}(2^(x)-2^(-x))`

B

`{log_(e)(2)}(2^(x)+2^(-x))`

C

`(1)/(log_(e)2)(2^(x)+2^(-x))`

D

`(log_(2)e)(2^(x)+2^(-x))`

Text Solution

Verified by Experts

The correct Answer is:
C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

int (x)/((x-2)(x+1))dx

int_2^4 1/x dx is equal to

int2/((1-x)(1+x^2))dx

int (x(x+1))/(x+2) dx

int(x^(2) +1)/((x+1))dx

int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to

int(x e^x)/((1+x)^2)dx is equal to

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

Let l_(1)=int_(0)^(1)(e^(x))/(1+x)dx and l_(2)=int_(0)^(1)(x^(2))/(e^(x^(3))(2-x^(3)))dx. "Then"(l_(1))/(l_(2)) is equal to

int_(0)^(1//2)(1)/(1-x^(2))ln.(1-x)/(1+x)dx is equal to