Home
Class 12
MATHS
If int(dx)/(p^(2)sin^(2)x+r^(2)cos^(2)x)...

If `int(dx)/(p^(2)sin^(2)x+r^(2)cos^(2)x)=(1)/(12)tan^(-1)(3tanx)+c` then the value of p `sinx+rcosx` can be

A

`(6)/(sqrt5)`

B

`sqrt(5)`

C

`6sqrt3`

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral and compare it with the provided expression. Let's go through the solution step by step. ### Step 1: Set up the integral We start with the integral: \[ I = \int \frac{dx}{p^2 \sin^2 x + r^2 \cos^2 x} \] ### Step 2: Simplify the integral To simplify the integral, we divide the numerator and denominator by \(\cos^2 x\): \[ I = \int \frac{1}{p^2 \tan^2 x + r^2} \sec^2 x \, dx \] ### Step 3: Use substitution Let \(t = \tan x\). Then, we have: \[ dx = \frac{dt}{\sec^2 x} = dt \] Thus, the integral becomes: \[ I = \int \frac{dt}{p^2 t^2 + r^2} \] ### Step 4: Apply the integral formula We can use the formula for the integral: \[ \int \frac{dt}{a^2 + t^2} = \frac{1}{a} \tan^{-1} \left( \frac{t}{a} \right) + C \] In our case, \(a^2 = r^2\) and \(t^2 = p^2 t^2\), so we rewrite the integral: \[ I = \frac{1}{r} \tan^{-1} \left( \frac{t}{\frac{r}{p}} \right) + C \] ### Step 5: Substitute back for \(t\) Substituting back \(t = \tan x\): \[ I = \frac{1}{r} \tan^{-1} \left( \frac{p \tan x}{r} \right) + C \] ### Step 6: Compare with the given expression According to the problem, we have: \[ I = \frac{1}{12} \tan^{-1}(3 \tan x) + C \] Now, we compare the two expressions: \[ \frac{1}{r} \tan^{-1} \left( \frac{p \tan x}{r} \right) = \frac{1}{12} \tan^{-1}(3 \tan x) \] ### Step 7: Equate coefficients From the comparison, we can equate: 1. \(pr = 12\) 2. \(\frac{p}{r} = 3 \Rightarrow p = 3r\) ### Step 8: Solve for \(p\) and \(r\) Substituting \(p = 3r\) into \(pr = 12\): \[ (3r)r = 12 \Rightarrow 3r^2 = 12 \Rightarrow r^2 = 4 \Rightarrow r = \pm 2 \] Then, substituting back to find \(p\): \[ p = 3r = 3(\pm 2) = \pm 6 \] ### Step 9: Find \(p \sin x + r \cos x\) Now we need to find the range of \(p \sin x + r \cos x\): \[ p \sin x + r \cos x = 6 \sin x + 2 \cos x \] ### Step 10: Determine the range The expression \(p \sin x + r \cos x\) can be expressed in the form \(R \sin(x + \phi)\) where: \[ R = \sqrt{p^2 + r^2} = \sqrt{6^2 + 2^2} = \sqrt{36 + 4} = \sqrt{40} = 2\sqrt{10} \] Thus, the range of \(p \sin x + r \cos x\) is: \[ [-2\sqrt{10}, 2\sqrt{10}] \] ### Conclusion The value of \(p \sin x + r \cos x\) can be any value within the range \([-2\sqrt{10}, 2\sqrt{10}]\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(1)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx=(1)/(12)tan^(-1)(3 tanx)+C , then the value of ab , is

int(1)/(cos^(2) x-3 sin^(2) x)dx

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

int(2tanx+3)/(sin^2x+2cos^2x)dx

If int(sec^(2)x-2010)/(sin^(2010)x)dx=(P(x))/(sin^(2010) x)+C , then value of P((pi)/(3)) is

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

If lim_(xto0) (p sin2x+(1-cos2x))/(x+tanx)=1 , then the value of p is___________.

int(sin2x)/((1+cos2x)^(2))dx

int(sinx. cos x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx

int(2+sin2x)/(1+cos2 x)dx