Home
Class 12
MATHS
If int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2...

If `int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2|+Blog(f(x))+c`, then

A

`B=-(1)/(2)`

B

A=1

C

`f(x)=|x^(2)+2x+2|`

D

`B=-(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{3x + 4}{x^3 - 2x - 4} \, dx \), we will follow these steps: ### Step 1: Factor the Denominator We need to factor the polynomial in the denominator \( x^3 - 2x - 4 \). We can use the Rational Root Theorem or trial and error to find a root. By substituting \( x = 2 \): \[ 2^3 - 2(2) - 4 = 8 - 4 - 4 = 0 \] Thus, \( x - 2 \) is a factor. We can perform polynomial long division or synthetic division to factor the cubic polynomial. ### Step 2: Polynomial Long Division Dividing \( x^3 - 2x - 4 \) by \( x - 2 \): 1. Divide the leading term: \( x^3 / x = x^2 \) 2. Multiply \( x^2 \) by \( x - 2 \): \( x^3 - 2x^2 \) 3. Subtract: \( (x^3 - 2x - 4) - (x^3 - 2x^2) = 2x^2 - 2x - 4 \) 4. Repeat: Divide \( 2x^2 / x = 2x \) 5. Multiply: \( 2x(x - 2) = 2x^2 - 4x \) 6. Subtract: \( (2x^2 - 2x - 4) - (2x^2 - 4x) = 2x - 4 \) 7. Repeat: Divide \( 2x / x = 2 \) 8. Multiply: \( 2(x - 2) = 2x - 4 \) 9. Subtract: \( (2x - 4) - (2x - 4) = 0 \) Thus, we have: \[ x^3 - 2x - 4 = (x - 2)(x^2 + 2x + 2) \] ### Step 3: Partial Fraction Decomposition We can express: \[ \frac{3x + 4}{(x - 2)(x^2 + 2x + 2)} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 + 2x + 2} \] Multiplying through by the denominator: \[ 3x + 4 = A(x^2 + 2x + 2) + (Bx + C)(x - 2) \] ### Step 4: Expand and Collect Terms Expanding: \[ 3x + 4 = A(x^2 + 2x + 2) + Bx^2 - 2Bx + Cx - 2C \] Combining like terms: \[ 3x + 4 = (A + B)x^2 + (2A - 2B + C)x + (2A - 2C) \] ### Step 5: Set Up the System of Equations Equating coefficients: 1. \( A + B = 0 \) (coefficient of \( x^2 \)) 2. \( 2A - 2B + C = 3 \) (coefficient of \( x \)) 3. \( 2A - 2C = 4 \) (constant term) ### Step 6: Solve the System From \( A + B = 0 \), we have \( B = -A \). Substituting into the other equations: 1. \( 2A - 2(-A) + C = 3 \) becomes \( 4A + C = 3 \) 2. \( 2A - 2C = 4 \) From the second equation, \( C = A - 2 \). Substituting this into \( 4A + (A - 2) = 3 \): \[ 5A - 2 = 3 \implies 5A = 5 \implies A = 1 \] Thus, \( B = -1 \) and \( C = -1 \). ### Step 7: Rewrite the Integral Now we can rewrite the integral: \[ \int \left( \frac{1}{x - 2} - \frac{x + 1}{x^2 + 2x + 2} \right) \, dx \] ### Step 8: Integrate Each Term 1. \( \int \frac{1}{x - 2} \, dx = \ln |x - 2| \) 2. For \( \int \frac{x + 1}{x^2 + 2x + 2} \, dx \), we use substitution \( u = x^2 + 2x + 2 \), \( du = (2x + 2)dx \), leading to: \[ \int \frac{1}{2} \frac{du}{u} = \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln |x^2 + 2x + 2| \] ### Final Answer Combining the results: \[ \int \frac{3x + 4}{x^3 - 2x - 4} \, dx = \ln |x - 2| - \frac{1}{2} \ln |x^2 + 2x + 2| + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(3))/((4-x^(4))^(2))dx

int(x^(2))/((x^(3) +4)^(3))dx

int((x-4)^(3))/(x^(2))dx

(x) int(x^(2)+3x-4)/(x^(2)+2x-3)dx

int((4x+6)/(x^(2)+3x+100))dx

int((x-4)^2)/x^3dx =?

Solve int(4x^(3)+3x^(2)+2x+4)dx

int (4x^(2) +x+1)/(x^(3) -1) dx=?

If int(1-x^(7))/(x(1+x^(7)))dx=alog_(e)|x|+blog_(e)|x^(7)+1|+c, then

int(4e^x+6e^(-x))/(9e^x-4e^(-x))dx=A x+Blog(9e^(2x)-4)+C ,t h e n A=_________ _, B=_________, C=___________