Home
Class 12
MATHS
If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2...

If `int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Psqrt(1-9x^(2))+Q(cos^(-1)3x)^(3)+c` then

A

`P=-(1)/(9)`

B

`Q=-(3)/(8)`

C

`P=(3)/(8)`

D

`Q=-(1)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x + (\cos^{-1}(3x))^2}{\sqrt{1 - 9x^2}} \, dx, \] we can break it down into two separate integrals: \[ I = \int \frac{x}{\sqrt{1 - 9x^2}} \, dx + \int \frac{(\cos^{-1}(3x))^2}{\sqrt{1 - 9x^2}} \, dx. \] ### Step 1: Solve the first integral For the first integral, we will use the substitution: \[ t = 1 - 9x^2 \implies dt = -18x \, dx \implies x \, dx = -\frac{dt}{18}. \] Now, we can rewrite the integral: \[ \int \frac{x}{\sqrt{1 - 9x^2}} \, dx = \int \frac{x}{\sqrt{t}} \left(-\frac{dt}{18}\right) = -\frac{1}{18} \int \frac{1}{\sqrt{t}} \, dt. \] The integral of \( \frac{1}{\sqrt{t}} \) is \( 2\sqrt{t} \): \[ -\frac{1}{18} \cdot 2\sqrt{t} = -\frac{1}{9} \sqrt{t} = -\frac{1}{9} \sqrt{1 - 9x^2}. \] ### Step 2: Solve the second integral For the second integral, we use the substitution: \[ u = \cos^{-1}(3x) \implies x = \frac{\cos(u)}{3} \implies dx = -\frac{\sin(u)}{3} \, du. \] Now, we can rewrite the integral: \[ \int \frac{(\cos^{-1}(3x))^2}{\sqrt{1 - 9x^2}} \, dx = \int \frac{u^2}{\sqrt{1 - 9\left(\frac{\cos(u)}{3}\right)^2}} \left(-\frac{\sin(u)}{3}\right) \, du. \] Calculating \( 1 - 9\left(\frac{\cos(u)}{3}\right)^2 \): \[ 1 - 9\left(\frac{\cos(u)}{3}\right)^2 = 1 - \cos^2(u) = \sin^2(u). \] Thus, \( \sqrt{1 - 9x^2} = \sin(u) \). The integral becomes: \[ -\frac{1}{3} \int u^2 \, du. \] The integral of \( u^2 \) is \( \frac{u^3}{3} \): \[ -\frac{1}{3} \cdot \frac{u^3}{3} = -\frac{1}{9} u^3. \] ### Step 3: Combine the results Now, combining both parts, we have: \[ I = -\frac{1}{9} \sqrt{1 - 9x^2} - \frac{1}{9} (\cos^{-1}(3x))^3 + C. \] ### Step 4: Compare with the given form The solution can be expressed as: \[ I = P\sqrt{1 - 9x^2} + Q(\cos^{-1}(3x))^3 + C, \] where \( P = -\frac{1}{9} \) and \( Q = -\frac{1}{9} \). ### Final Answer Thus, the values of \( P \) and \( Q \) are: \[ P = -\frac{1}{9}, \quad Q = -\frac{1}{9}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Asqrt(1-9x^(2))+B(cos^(-1)3x)^(3)+C, then A-B is

int(dx)/(sqrt(1-9x^(2)))

int( 1)/(sqrt(9x^(2)-1))dx

int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k _(1)) ( sqrt(1-9x ^(2))+ (cos ^(-1) 3x )^(k_(2)))+c, then k _(1) ^(2)+k_(2)^(2)= (where C is an arbitrary constnat. )

int(1)/(sqrt(x^(2) -9))dx

int(1)/(sqrt(2+x-3x^2))dx

int(3x-1)/(sqrt(x^(2)+9))dx

int(1)/(sqrt(x^(2)+3x+1))dx

int1/ (sqrt(9-x^2))^3dx

(9) int_(0)^(1)(dx)/(x+sqrt(1-x^(2)))