Home
Class 12
MATHS
intx^(5)cos^(2)logsqrtxdx=...

`intx^(5)cos^(2)logsqrtxdx=`

A

`(x^(6))/(12)+(x^(6))/(74)(5coslogx+sinlogx)+c`

B

`(x^(6))/(12)-(x^(6))/(48)(5coslogx+sinlogx)+c`

C

`((x^(3)-1)(x^(3)+1))/(12)+(x^(6))/(48)(5coslogx+sinlogx)+c`

D

`((x^(3)-1)(x^(3)+1))/(12)+(x^(6))/(74)(6coslogx+sinlogx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^5 \cos^2(\log(\sqrt{x})) \, dx \), we can follow these steps: ### Step 1: Simplify the Integral We start by simplifying the cosine squared term using the identity: \[ \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} \] Applying this to our integral: \[ \cos^2(\log(\sqrt{x})) = \frac{1 + \cos(2\log(\sqrt{x}))}{2} \] Since \( \log(\sqrt{x}) = \frac{1}{2} \log(x) \), we have: \[ \cos(2\log(\sqrt{x})) = \cos(\log(x)) \] Thus, the integral becomes: \[ \int x^5 \cos^2(\log(\sqrt{x})) \, dx = \frac{1}{2} \int x^5 (1 + \cos(\log(x))) \, dx \] ### Step 2: Separate the Integral Now, we can separate the integral into two parts: \[ \frac{1}{2} \left( \int x^5 \, dx + \int x^5 \cos(\log(x)) \, dx \right) \] ### Step 3: Solve the First Integral The first integral is straightforward: \[ \int x^5 \, dx = \frac{x^{6}}{6} + C_1 \] ### Step 4: Solve the Second Integral Using Integration by Parts Let \( I = \int x^5 \cos(\log(x)) \, dx \). We will use integration by parts where: - Let \( u = x^5 \) and \( dv = \cos(\log(x)) \, dx \) Calculating \( du \) and \( v \): - \( du = 5x^4 \, dx \) - To find \( v \), we need to integrate \( dv \): \[ v = \int \cos(\log(x)) \, dx \] Using the substitution \( t = \log(x) \) (thus \( dt = \frac{1}{x} \, dx \) or \( dx = e^t \, dt \)): \[ \int \cos(t) e^t \, dt \] Using integration by parts again: - Let \( a = e^t \) and \( db = \cos(t) \, dt \) - Then \( da = e^t \, dt \) and \( b = \sin(t) \) Thus: \[ \int e^t \cos(t) \, dt = e^t \sin(t) - \int e^t \sin(t) \, dt \] This integral can be solved similarly. However, we can denote: \[ \int e^t \cos(t) \, dt = e^t \sin(t) + e^t \cos(t) + C \] Returning to our original variables, we have: \[ v = x \sin(\log(x)) + x \cos(\log(x)) \] ### Step 5: Substitute Back into Integration by Parts Now substituting back into the integration by parts formula: \[ I = x^5 (x \sin(\log(x)) + x \cos(\log(x))) - \int 5x^4 (x \sin(\log(x)) + x \cos(\log(x))) \, dx \] ### Step 6: Combine Results Finally, we combine our results: \[ \int x^5 \cos^2(\log(\sqrt{x})) \, dx = \frac{1}{2} \left( \frac{x^6}{6} + I \right) \] ### Final Result After solving for \( I \) and substituting back, we will arrive at the final expression for the integral.
Promotional Banner

Similar Questions

Explore conceptually related problems

intx^3e^(x^2)dx

intx(3x-5)^4dx

intx^4/(1+x^2)dx

Evaluate: intx^2\ cos^(-1)\ x\ dx

The slope of the tangent to the curve y=int_x^(x^2)cos^(- 1)t^2dt at x=1/(root(4)2) is

Evaluate: intx/((x^2+4)sqrt(x^2+1))dx

Evaluate: intx/((x^2+4)sqrt(x^2+1))dx

Evaluate: (i) intx^x(1+logx)\ dx (ii) intx^(2x)\ (1+logx)\ dx

intx^2/sqrt(1-x)dx

intx^3(1-x^2)^(5/2)dx