Home
Class 12
MATHS
l(n)=intx^(n)sqrt(a^(2)-x^(2))dx, then a...

`l_(n)=intx^(n)sqrt(a^(2)-x^(2))dx`, then answer the following questions:
The value of `l_(1)` is

A

`(2)/(3)(a^(2)-x^(2))^(1//2)`

B

`(1)/(3)(a^(2)-x^(2))^(3//2)`

C

`-(2)/(3)(a^(2)-x^(2))^(3//2)`

D

`-(1)/(3)(a^(2)-x^(2))^(3//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( I_1 = \int x \sqrt{a^2 - x^2} \, dx \), we will follow these steps: ### Step 1: Substitution We start by substituting \( t = a^2 - x^2 \). Then, we differentiate both sides: \[ dt = -2x \, dx \quad \Rightarrow \quad dx = -\frac{dt}{2x} \] ### Step 2: Rewrite the Integral Now we can rewrite the integral \( I_1 \) using our substitution: \[ I_1 = \int x \sqrt{t} \left(-\frac{dt}{2x}\right) \] This simplifies to: \[ I_1 = -\frac{1}{2} \int \sqrt{t} \, dt \] ### Step 3: Integrate Now we integrate \( \sqrt{t} \): \[ \int \sqrt{t} \, dt = \frac{t^{3/2}}{\frac{3}{2}} = \frac{2}{3} t^{3/2} \] Thus, we have: \[ I_1 = -\frac{1}{2} \cdot \frac{2}{3} t^{3/2} + C = -\frac{1}{3} t^{3/2} + C \] ### Step 4: Substitute Back Now we substitute back \( t = a^2 - x^2 \): \[ I_1 = -\frac{1}{3} (a^2 - x^2)^{3/2} + C \] ### Final Answer The value of \( I_1 \) is: \[ I_1 = -\frac{1}{3} (a^2 - x^2)^{3/2} + C \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

intx^2/sqrt(1-x^2)dx

intx^2/sqrt(1+x^2)dx

intx^2sqrt(x^6-1)dx

intx^2/sqrt(1-x)dx

Evaluate: intx/sqrt (a^2-x^2)dx

Evaluate: intx^2sqrt(x+2)dx

If the direction cosines of two lines are (l_(1), m_(1), n_(1)) and (l_(2), m_(2), n_(2)) and the angle between them is theta then l_(1)^(2)+m_(1)^(2)+n_(1)^(2)=1=l_(2)^(2)+m_(2)^(2)+n_(2)^(2) and costheta = l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2) If the angle between the lines is 60^(@) then the value of l_(1)(l_(1)+l_(2))+m_(1)(m_(1)+m_(2))+n_(1)(n_(1)+n_(2)) is

Evaluate: intx/(x-sqrt(x^2-1))dx

Evaluate: intx/(x-sqrt(x^2-1))dx

Evaluate: intx/(x-sqrt(x^2-1))dx