Home
Class 12
MATHS
Read the following passages and answer t...

Read the following passages and answer the following questions (7-9)
Consider the integrals of the form `l=inte^(x)(f(x)+f'(x))dx` By product rule considering `e^(x)f(x)` as first integral and `e^(x)f'(x)` as second one, we get `l=e^(x)f(x)-int(f(x)+f'(x))dx=e^(x)f(x)+c`
`l=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx` then l is equal to

A

`e^(x)(tan^(-1)x-(1)/(1+x^(2)))+c`

B

`e^(x)(tan^(-1)x+(1)/(1+x^(2)))+c`

C

`e^(x)(tan^(-1)x+(2)/(1+x^(2)))+c`

D

`e^(x)(tan^(-1)x-(2)/(1+x^(2)))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( l = \int e^x \left( \tan^{-1} x + \frac{2x}{(1+x^2)^2} \right) dx \), we will apply the product rule and the properties of integration as discussed in the passage. ### Step-by-Step Solution: 1. **Identify the Function**: We can express the integral in a form that allows us to apply the product rule. Let: \[ f(x) = \tan^{-1} x - \frac{1}{1+x^2} \] The derivative \( f'(x) \) will help us simplify the integral. 2. **Calculate the Derivative**: To find \( f'(x) \): \[ f'(x) = \frac{d}{dx} \left( \tan^{-1} x \right) - \frac{d}{dx} \left( \frac{1}{1+x^2} \right) \] The derivative of \( \tan^{-1} x \) is \( \frac{1}{1+x^2} \), and the derivative of \( \frac{1}{1+x^2} \) is: \[ -\frac{2x}{(1+x^2)^2} \] Therefore: \[ f'(x) = \frac{1}{1+x^2} + \frac{2x}{(1+x^2)^2} \] 3. **Combine \( f(x) \) and \( f'(x) \)**: Now we can see that: \[ f'(x) = \frac{1}{1+x^2} + \frac{2x}{(1+x^2)^2} \] This means: \[ \tan^{-1} x + f'(x) = \tan^{-1} x + \left( \frac{1}{1+x^2} + \frac{2x}{(1+x^2)^2} \right) \] 4. **Apply the Product Rule**: According to the product rule, we have: \[ \int e^x (f(x) + f'(x)) dx = e^x f(x) + C \] Thus: \[ l = e^x f(x) + C \] 5. **Substitute \( f(x) \)**: Substitute \( f(x) \) back into the equation: \[ l = e^x \left( \tan^{-1} x - \frac{1}{1+x^2} \right) + C \] 6. **Final Result**: Therefore, the value of \( l \) is: \[ l = e^x \left( \tan^{-1} x - \frac{1}{1+x^2} \right) + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Read the following passages and answer the following questions (7-9) Consider the integrals of the form l=inte^(x)(f(x)+f'(x))dx By product rule considering e^(x)f(x) as first integral and e^(x)f'(x) as second one, we get l=e^(x)f(x)-int(f(x)+f'(x))dx=e^(x)f(x)+c int((1)/(lnx)-(1)/((lnx)^(2)))dx is equal to

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

int (f'(x))/( f(x) log(f(x)))dx is equal to

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

inte^(x)(1+x)sec^(2)(xe^(x))dx=f (x)+ Constant , then f (x) is equal to

If l=int(sqrt(tanx)+sqrt(cotx))dx=f(x)+c then f(x) is equal to

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is