Home
Class 12
MATHS
If int(x^(9)+x^(6)+x^(3))(2x^(6)+3x^(3)+...

If `int(x^(9)+x^(6)+x^(3))(2x^(6)+3x^(3)+6)^(1//3)dx=a(2x^(9)+3x^(6)+6x^(3))^(4//3)+c` then the value of 48a must be _______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int (x^9 + x^6 + x^3)(2x^6 + 3x^3 + 6)^{1/3} \, dx = a(2x^9 + 3x^6 + 6x^3)^{4/3} + c, \] we will follow a systematic approach. ### Step 1: Factor out \(x^3\) from the integrand We can factor out \(x^3\) from the polynomial \(x^9 + x^6 + x^3\): \[ x^9 + x^6 + x^3 = x^3(x^6 + x^3 + 1). \] Thus, the integral becomes: \[ \int x^3(x^6 + x^3 + 1)(2x^6 + 3x^3 + 6)^{1/3} \, dx. \] ### Step 2: Substitute \(T\) Let \(T = 2x^9 + 3x^6 + 6x^3\). We will differentiate \(T\) with respect to \(x\): \[ \frac{dT}{dx} = 18x^8 + 18x^5 + 18x^2 = 18(x^8 + x^5 + x^2). \] This gives us: \[ dT = 18(x^8 + x^5 + x^2) \, dx. \] ### Step 3: Solve for \(dx\) From the above, we can express \(dx\) in terms of \(dT\): \[ dx = \frac{dT}{18(x^8 + x^5 + x^2)}. \] ### Step 4: Substitute into the integral Now we substitute \(T\) and \(dx\) into the integral: \[ \int x^3(x^6 + x^3 + 1)(2x^6 + 3x^3 + 6)^{1/3} \cdot \frac{dT}{18(x^8 + x^5 + x^2)}. \] ### Step 5: Simplify the integral Notice that \(x^3(x^6 + x^3 + 1)\) can be simplified. We can express the integral as: \[ \frac{1}{18} \int T^{1/3} \, dT. \] ### Step 6: Integrate The integral of \(T^{1/3}\) is: \[ \int T^{1/3} \, dT = \frac{T^{4/3}}{4/3} = \frac{3}{4} T^{4/3}. \] Thus, we have: \[ \frac{1}{18} \cdot \frac{3}{4} T^{4/3} + C = \frac{1}{24} T^{4/3} + C. \] ### Step 7: Substitute back for \(T\) Substituting back for \(T\): \[ \frac{1}{24} (2x^9 + 3x^6 + 6x^3)^{4/3} + C. \] ### Step 8: Compare coefficients Comparing this with the original expression \(a(2x^9 + 3x^6 + 6x^3)^{4/3} + c\), we find: \[ a = \frac{1}{24}. \] ### Step 9: Calculate \(48a\) Finally, we calculate \(48a\): \[ 48a = 48 \cdot \frac{1}{24} = 2. \] Thus, the value of \(48a\) is \[ \boxed{2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If int (x^9+x^6+x^3)(2x^6+3x^3+6)^(1/3) dx=1/a(2x^9+3x^6+6x^3)^(4/3)+c , then 'a' is equal to:

int(x^(3m)+x^(2m)+x^m)(2x^(2m)+3x^m+6)^(1/m)dx

int(x^2)/(x^6+x^3-2)dx

y=(x^(3)+(x^(6))/(2)+(x^(9))/(3)+……) then

Evaluate int(x^(6)+x^(4)+x^(2))sqrt(2x^(4)+3x^(2)+6)dx .

If x=2+2^(2//3)+2^(1//3) , then the value of x^3-6x^2+6x is

If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) +betax ^(4) + gammax ^(2))^(3//2))/(18) +C where C is constnat, then find the value of (beta + gamma - alpha).

If x+1/x=3 , then the value of x^6+1/x^6 is.

int(dx)/(x(1+4x^3+3x^6))

int((4x+6)/(x^(2)+3x+100))dx