Home
Class 12
MATHS
If intsqrt(cos e cx+1)dx=kfog(x)+c ,w h...

If `intsqrt(cos e cx+1)dx=kfog(x)+c ,w h e r ek` is a real constant, then (a).`k=-2,f(x)=cot^(-1)x ,g(x)=sqrt(cos e cx-1)` (b) `k=-2,f(x)=tan^(-1)x ,g(x)=sqrt(cos e cx-1)` (c) `k=2,f(x)=tan^(-1)xg(x)=(cotx)/(sqrt(cos e cx-1))` (d) `k=2,f(x)=cot^(-1)xg(x)=(cotx)/(sqrt(cos e cx-1))`

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

Evaluate: intsqrt(cos e cx-1) dx

Solve for x : 2tan^(-1)(cosx)=tan^(-1)(2cos e cx)

If int ( 1+cos 8x)/( tan 2x-cot 2x)dx = k cos 8x+ C , then k equals

If y=cot^(-1)(sqrt(cos"x"))-tan^(-1)(sqrt(cos"x")), prove that siny=tan^2x/2

If y=cot^(-1)(sqrt(cos"x"))-tan^(-1)(sqrt(cos"x")), prove that siny=tan^2x/2

Which of the following pairs of functions is/are identical? (a) f(x)="tan"(tan^(-1)x)a n dg(x)="cot"(cot^(-1)x) (b) f(x)=sgn(x)a n dg(x)=sgn(sgn(x)) (c) f(x)=cot^2xdotcos^2xa n dg(x)=cot^2x-cos^2x (d) f(x)=e^(lnsec^(-1)x)a n dg(x)=sec^(-1)x

int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)+c (b) e^(tan^(-1)x)+c (c) -xe^(tan^(-1)x)+c (d) xe^(tan^(-1)x)+c

If int cos^(-1)x+cos^(-1)sqrt(1-x^2) dx= Ax+f(x)sin^(-1)x-2sqrt(1-x^2)+c then

Find the domain of the following following functions: (a) f(x)=(sin^(-1))/(x) (b) f(x)=sin^(-1)(|x-1|-2) (c ) f(x)=cos^(-1)(1+3x+2x^(2)) (d ) f(x)=(sin^(-1)(x-3))/(sqrt(9-x^(2))) (e ) f(x)="cos"^(-1)((6-3x)/(4))+"cosec"^(-1)((x-1)/(2)) (f) f(x)=sqrt("sec"^(-1)((2-|x|)/(4)))