Home
Class 12
MATHS
int1/(x^4+3x^2+9)dx...

`int1/(x^4+3x^2+9)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x^4 + 3x^2 + 9} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{x^4 + 3x^2 + 9} \, dx \] To facilitate the integration, we can multiply and divide by 6: \[ I = \frac{1}{6} \int \frac{6}{x^4 + 3x^2 + 9} \, dx \] ### Step 2: Factor the Denominator Next, we rewrite the denominator: \[ x^4 + 3x^2 + 9 = (x^2)^2 + 3(x^2) + 9 \] Let \( y = x^2 \), then we have: \[ y^2 + 3y + 9 \] This can be expressed as: \[ y^2 + 3y + 9 = (y + \frac{3}{2})^2 + \frac{27}{4} \] Thus, we can rewrite the integral as: \[ I = \frac{1}{6} \int \frac{6}{(y + \frac{3}{2})^2 + \frac{27}{4}} \, dy \] ### Step 3: Use Substitution Now, let: \[ u = y + \frac{3}{2} \quad \text{so that} \quad dy = du \] The integral becomes: \[ I = \frac{1}{6} \int \frac{6}{u^2 + \frac{27}{4}} \, du \] ### Step 4: Simplify the Integral This integral can be simplified further: \[ I = \int \frac{1}{u^2 + \left(\frac{3\sqrt{3}}{2}\right)^2} \, du \] Using the formula: \[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] we find: \[ I = \frac{1}{\frac{3\sqrt{3}}{2}} \tan^{-1} \left( \frac{u}{\frac{3\sqrt{3}}{2}} \right) + C \] ### Step 5: Substitute Back Substituting back for \( u \): \[ I = \frac{2}{3\sqrt{3}} \tan^{-1} \left( \frac{y + \frac{3}{2}}{\frac{3\sqrt{3}}{2}} \right) + C \] Substituting \( y = x^2 \): \[ I = \frac{2}{3\sqrt{3}} \tan^{-1} \left( \frac{x^2 + \frac{3}{2}}{\frac{3\sqrt{3}}{2}} \right) + C \] ### Final Answer Thus, the final answer is: \[ I = \frac{2}{3\sqrt{3}} \tan^{-1} \left( \frac{2x^2 + 3}{3\sqrt{3}} \right) + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_1^4 3x^2dx

int1/(x^4+5x^2+1)dx

Evaluate: int1/(x^4+3x^2+1)\ dx

Evaluate: int1/(x^4+x^2+1)\ dx

int(1)/(4x^(2) +9) dx

Evaluate: int1/(1-x-4x^2)\ dx

Evaluate : int1/(4+9x^(2)) dx

int 1/(2x^2+3x+4) dx

int1/(3x^2+13x-10)dx

int1/(3x^2+13x-10)dx