Home
Class 12
MATHS
For x >0,l e tf(x)=int1^x((log)e t)/(...

For `x >0,l e tf(x)=int_1^x((log)_e t)/(1+t)dtdot` Find the function `f(x)+f(1/x)` and show that `f(e)+f(1/e)=1/2dot`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

For x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot Find the function f(x)+f(1/x) and find the value of f(e)+f(1/e)dot

For x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot Find the function f(x)+f(1/x) and find the value of f(e)+f(1/e)dot

Iff(x)=int_1^x(logt)/(1+t+t^2)dxAAxlt=1,t h e np rov et h a tf(x)=f(1/x)dot

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let F(x)""=""f(x)""+""f(1/x),"w h e r e"f(x)=int_1^x(logt)/(1+t)dtdot Then 2F(x)""= (1) 1/2 (2) 0 (3) 1 (4) 2

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is