Home
Class 12
MATHS
show that int(0)^(pi//2)(sinx-cosx)log(s...

show that `int_(0)^(pi//2)(sinx-cosx)log(sinx+cosx)dx=0`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \[ \int_{0}^{\frac{\pi}{2}} \left( \sin x - \cos x \right) \log \left( \sin x + \cos x \right) \, dx = 0, \] we can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, we have \( a = 0 \) and \( b = \frac{\pi}{2} \), so we can rewrite the integral as follows: 1. **Define the integral:** Let \[ I = \int_{0}^{\frac{\pi}{2}} \left( \sin x - \cos x \right) \log \left( \sin x + \cos x \right) \, dx. \] 2. **Apply the property of definite integrals:** Using the property mentioned, we can find \( I \) as follows: \[ I = \int_{0}^{\frac{\pi}{2}} \left( \sin \left( \frac{\pi}{2} - x \right) - \cos \left( \frac{\pi}{2} - x \right) \right) \log \left( \sin \left( \frac{\pi}{2} - x \right) + \cos \left( \frac{\pi}{2} - x \right) \right) \, dx. \] 3. **Simplify the expressions:** We know that: \[ \sin \left( \frac{\pi}{2} - x \right) = \cos x \quad \text{and} \quad \cos \left( \frac{\pi}{2} - x \right) = \sin x. \] Therefore, we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \left( \cos x - \sin x \right) \log \left( \cos x + \sin x \right) \, dx. \] 4. **Combine the two integrals:** Now we have two expressions for \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} \left( \sin x - \cos x \right) \log \left( \sin x + \cos x \right) \, dx, \] and \[ I = \int_{0}^{\frac{\pi}{2}} \left( \cos x - \sin x \right) \log \left( \cos x + \sin x \right) \, dx. \] 5. **Add both expressions:** Adding both expressions for \( I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \left( \sin x - \cos x \right) + \left( \cos x - \sin x \right) \right) \log \left( \sin x + \cos x \right) \, dx. \] Notice that the terms \(\sin x\) and \(-\sin x\) cancel out, as do \(\cos x\) and \(-\cos x\): \[ 2I = \int_{0}^{\frac{\pi}{2}} 0 \cdot \log \left( \sin x + \cos x \right) \, dx = 0. \] 6. **Conclusion:** Therefore, we have: \[ 2I = 0 \implies I = 0. \] Thus, we conclude that: \[ \int_{0}^{\frac{\pi}{2}} \left( \sin x - \cos x \right) \log \left( \sin x + \cos x \right) \, dx = 0. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(pi//2)(sinx-cosx)/(1+sinx*cosx)dx

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

The value of int_(0)^(pi//2)(asinx+bcosx)/(sinx+cosx)dx is equal to

Prove that: int_0^(pi//2)(sin x)/(sinx-cosx)dx=pi/4

Evaluate: int_0^(pi//2)x/(sinx+cosx)dx

Evaluate int_(0)^((pi)/2)(sin3x)/(sinx+cosx) dx .

Evaluate: int_(-pi//2)^(pi//2)log(sinx+cosx)dx

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx

Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx