Home
Class 12
MATHS
int- 10^20[cot^(- 1)x]dx...

`int_- 10^20[cot^(- 1)x]dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int_{-10}^{20} \cot^{-1}(x) \, dx\), we will break down the problem step by step. ### Step 1: Understanding the Function The function we are integrating is \(\cot^{-1}(x)\), which is the inverse cotangent function. We need to evaluate the definite integral from \(-10\) to \(20\). ### Step 2: Finding the Limits The limits of integration are from \(-10\) to \(20\). We will first find the values of \(\cot^{-1}(x)\) at the endpoints and any critical points in between. ### Step 3: Identify Critical Points The function \(\cot^{-1}(x)\) has specific values at certain points: - \(\cot^{-1}(0) = \frac{\pi}{2}\) - \(\cot^{-1}(1) = \frac{\pi}{4}\) - \(\cot^{-1}(2)\) - \(\cot^{-1}(3)\) We will evaluate the function at these points to determine the behavior of the function over the interval. ### Step 4: Break the Integral into Parts To evaluate the integral, we can break it into segments based on the values of \(\cot^{-1}(x)\): 1. From \(-10\) to \(\cot^{-1}(3)\) 2. From \(\cot^{-1}(3)\) to \(\cot^{-1}(2)\) 3. From \(\cot^{-1}(2)\) to \(\frac{\pi}{4}\) 4. From \(\frac{\pi}{4}\) to \(20\) ### Step 5: Evaluate Each Segment 1. **From \(-10\) to \(\cot^{-1}(3)\)**: - Here, \(\cot^{-1}(x)\) is approximately \(3\), so the integral becomes: \[ \int_{-10}^{\cot^{-1}(3)} 3 \, dx = 3 \left[ x \right]_{-10}^{\cot^{-1}(3)} = 3 \left( \cot^{-1}(3) + 10 \right) \] 2. **From \(\cot^{-1}(3)\) to \(\cot^{-1}(2)\)**: - The value of \(\cot^{-1}(x)\) is approximately \(2\): \[ \int_{\cot^{-1}(3)}^{\cot^{-1}(2)} 2 \, dx = 2 \left[ x \right]_{\cot^{-1}(3)}^{\cot^{-1}(2)} = 2 \left( \cot^{-1}(2) - \cot^{-1}(3) \right) \] 3. **From \(\cot^{-1}(2)\) to \(\frac{\pi}{4}\)**: - The value of \(\cot^{-1}(x)\) is approximately \(1\): \[ \int_{\cot^{-1}(2)}^{\frac{\pi}{4}} 1 \, dx = \left[ x \right]_{\cot^{-1}(2)}^{\frac{\pi}{4}} = \frac{\pi}{4} - \cot^{-1}(2) \] 4. **From \(\frac{\pi}{4}\) to \(20\)**: - The value of \(\cot^{-1}(x)\) is \(0\) for \(x > 0\): \[ \int_{\frac{\pi}{4}}^{20} 0 \, dx = 0 \] ### Step 6: Combine the Results Now, we combine all the evaluated segments: \[ \text{Total} = 3 \left( \cot^{-1}(3) + 10 \right) + 2 \left( \cot^{-1}(2) - \cot^{-1}(3) \right) + \left( \frac{\pi}{4} - \cot^{-1}(2) \right) + 0 \] ### Step 7: Simplify the Expression Combine like terms: \[ = 3 \cot^{-1}(3) + 30 + 2 \cot^{-1}(2) - 2 \cot^{-1}(3) + \frac{\pi}{4} - \cot^{-1}(2) \] \[ = (3 - 2) \cot^{-1}(3) + (2 - 1) \cot^{-1}(2) + 30 + \frac{\pi}{4} \] \[ = \cot^{-1}(3) + \cot^{-1}(2) + 30 + \frac{\pi}{4} \] ### Final Result Thus, the final result of the integral is: \[ \int_{-10}^{20} \cot^{-1}(x) \, dx = \cot^{-1}(3) + \cot^{-1}(2) + 30 + \frac{\pi}{4} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

int_- 1^1cot^(- 1)((x+x^3)/(1+x^4))dx

int_0^1cot^(- 1)(1-x+x^2)dx

Evaluate: int_0^1cot^(-1)(1-x+x^2)dx

int_1^(10pi)([sec^(- 1)x]+[cot^(- 1)x]dx where [.] denotes the greatest integer function is (A) 10pi-sec1 (B) 10pi+sec1 (C) 10pi-sec1+cot1 (D) sec1+cot1

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

int\ cot^(-1)x\ dx

int cot^-1 x dx

If int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

int_(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx , where [.] denotes the greatest integer function, is equal to:

If 2int_0^1 tan^(-1)x dx= int_0^1 cot^(-1)(1-x+x^2) dx then int_0^1 tan^(-1)(1-x+x^2) dx=