Home
Class 12
MATHS
f,g,h are continuous in [0,1],f(a-x)=f(x...

`f,g,h` are continuous in `[0,1],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5`. Then prove that `int_(0)^(a)f(x)g(x)h(x)dx=0`.

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

f,g, h , are continuous in [0, a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5. Then prove that int_0^af(x)g(x)h(x)dx=0

Prove that int_(0)^(a)f(x)g(a-x)dx=int_(0)^(a)g(x)f(a-x)dx .

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi-x) =1=g (x)+g(pi-x) then int_(0)^(pi) [f(x)+g(x)] dx is equal to

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is

If f(x)=e^(x)g(x),g(0)=2,g'(0)=1, then f'(0) is

If f(x) and g(x) are two continuous functions defined on [-a,a] then the the value of int_(-a)^(a) {f(x)f+(-x) } {g(x)-g(-x)}dx is,

If f(x)=x-1, g(x)=3x , and h(x)=5/x , then f^(-1)(g(h(5))) =

Statement-1: int_(0)^(1)(cos x)/(1+x^(2))dxgt(pi)/(4)cos1 Statement-2: If f(x) and g(x) are continuous on [a,b], then int_(a)^(b) f(x) g(x)dx=f(c )int_(a)^(b)g(x) for some c in (a,b) .

If f,g,a n d \ h are differentiable functions of x and d(x)=|[f,g,h],[(xf)',(xg)',(x h)'],[(x^(2)f)'',(x^2g)'',(x^2h)'']| prove that d^(prime)(x)=|[f,g,h],[f',g',h'],[(x^3f' ')',(x^3g' ')',(x^3h ' ')']|