Home
Class 12
MATHS
Let f(x), xge0, be a non-negative contin...

Let `f(x), xge0`, be a non-negative continous function,and let `F(x) = int_(0)^(x)dt, xge0`, if for some `cgt0,f(x)lec F(x)` for all `xge0`, then show that `f(x)=0` for all `xge0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x),xgeq0, be a non-negative continuous function, and let f(x)=int_0^xf(t)dt ,xgeq0, if for some c >0,f(x)lt=cF(x) for all xgeq0, then show that f(x)=0 for all xgeq0.

If f(x)=int_(-1)^(x)|t|dt , then for any xge0,f(x) equals

Let f(x) be a non-positive continuous function and F(x)=int_(0)^(x)f(t)dt AA x ge0 and f(x) ge cF(x) where c lt 0 and let g:[0, infty) to R be a function such that (dg(x))/(dx) lt g(x) AA x gt 0 and g(0)=0 The number of solution(s) of the equation |x^(2)+x-6|=f(x)+g(x) is/are

Let f(x) be a non-positive continuous function and F(x)=int_(0)^(x)f(t)dt AA x ge0 and f(x) ge cF(x) where c lt 0 and let g:[0, infty) to R be a function such that (dg(x))/(dx) lt g(x) AA x gt 0 and g(0)=0 The total number of root(s) of the equation f(x)=g(x) is/ are

Let f(x) be a non-positive continuous function and F(x)=int_(0)^(x)f(t)dt AA x ge0 and f(x) ge cF(x) where c lt 0 and let g:[0, infty) to R be a function such that (dg(x))/(dx) lt g(x) AA x gt 0 and g(0)=0 The solution set of inequation g(x)(cos^(-1)x-sin^(-1)) le0

Let f(x) be a non negative continuous and bounded function for all xge0 .If (cos x)f(x) lt (sin x- cosx)f(x) forall x ge 0 , then which of the following is/are correct?

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be a differentiable function in the interval (0, 2) then the value of int_(0)^(2)f(x)dx

Let f:[0,1]to R be a continuous function then the maximum value of int_(0)^(1)f(x).x^(2)dx-int_(0)^(1)x.(f(x))^(2)dx for all such function(s) is:

Let f(x)=(sin x)/(x), x ne 0 . Then f(x) can be continous at x=0, if