Home
Class 12
MATHS
If Un=int0^pi(1-cosnx)/(1-cosx)dx , wher...

If `U_n=int_0^pi(1-cosnx)/(1-cosx)dx ,` where `n` is positive integer or zero, then show that `U_(n+2)+U_n=2U_(n+1)dot` Hence, deduce that `int_0^(pi/2)(sin^2ntheta)/(sin^2theta)=1/2npidot`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(2)-(1)/(n)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If U_(n)=int_(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of zero, then The value of U_(n) is a. pi//2 b. pi c. npi//2 d. npi

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2

Show that int_0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integer and , 0<=vltpi

Show that int_0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integer and , 0<=vltpi

If I_n= int_0^pi (1-cos2nx)/(1-cos2x)dx or int_0^pi (sin^2nx)/(sin^2x) dx, show that I_1, I_2, I_3…………. are inA.P.

The value of I(n) =int_0^pi(sin ^2n theta)/(sin^2theta) d theta is (AA n in N)

Determine a positive integer n such that int_0^(pi/2)x^nsinx dx=3/4(pi^2-8)

Determine a positive integer n such that int_0^(pi/2)x^nsinx dx=3/4(pi^2-8)