Home
Class 12
MATHS
Prove that int(0)^(2pi)e^(costheta)cos(s...

Prove that `int_(0)^(2pi)e^(costheta)cos(sintheta)d theta=2pi`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \int_{0}^{2\pi} e^{\cos \theta} \cos(\sin \theta) \, d\theta = 2\pi, \] we will use a parameterized integral approach. ### Step 1: Define the Integral with a Parameter Let \[ I(\alpha) = \int_{0}^{2\pi} e^{\alpha \cos \theta} \cos(\sin \theta) \, d\theta. \] We want to find \(I(1)\). ### Step 2: Differentiate with Respect to \(\alpha\) Differentiate \(I(\alpha)\) with respect to \(\alpha\): \[ \frac{dI}{d\alpha} = \int_{0}^{2\pi} \frac{\partial}{\partial \alpha} \left( e^{\alpha \cos \theta} \cos(\sin \theta) \right) d\theta. \] Using the chain rule, we have: \[ \frac{\partial}{\partial \alpha} \left( e^{\alpha \cos \theta} \cos(\sin \theta) \right) = e^{\alpha \cos \theta} \cos(\sin \theta) \cos \theta. \] Thus, \[ \frac{dI}{d\alpha} = \int_{0}^{2\pi} e^{\alpha \cos \theta} \cos(\sin \theta) \cos \theta \, d\theta. \] ### Step 3: Evaluate \(I(0)\) Now, let's evaluate \(I(0)\): \[ I(0) = \int_{0}^{2\pi} e^{0 \cdot \cos \theta} \cos(\sin \theta) \, d\theta = \int_{0}^{2\pi} \cos(\sin \theta) \, d\theta. \] Since \(\cos(\sin \theta)\) is periodic with period \(2\pi\), we can evaluate this integral directly. ### Step 4: Evaluate \(I(1)\) Next, we need to evaluate \(I(1)\): \[ I(1) = \int_{0}^{2\pi} e^{\cos \theta} \cos(\sin \theta) \, d\theta. \] ### Step 5: Use the Fundamental Theorem of Calculus Using the Fundamental Theorem of Calculus, we can find \(I(1)\) by integrating \( \frac{dI}{d\alpha} \): \[ I(1) - I(0) = \int_{0}^{1} \frac{dI}{d\alpha} \, d\alpha. \] ### Step 6: Evaluate the Integral Now, we need to evaluate \( \frac{dI}{d\alpha} \) at \(\alpha = 0\): \[ \frac{dI}{d\alpha} \bigg|_{\alpha=0} = \int_{0}^{2\pi} \cos(\sin \theta) \cos \theta \, d\theta. \] This integral evaluates to \(0\) because the integrand is an odd function over the interval \([0, 2\pi]\). ### Step 7: Conclude the Result Since \( \frac{dI}{d\alpha} \bigg|_{\alpha=0} = 0\), it follows that: \[ I(1) = I(0) + 0 = I(0). \] We also know that \(I(0) = 2\pi\), thus: \[ I(1) = 2\pi. \] ### Final Result Therefore, we conclude that: \[ \int_{0}^{2\pi} e^{\cos \theta} \cos(\sin \theta) \, d\theta = 2\pi. \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/2) sqrt(sintheta)cos^5theta d theta

int_0^(pi/2) (a+bsintheta)^3costheta d theta

int_0^(pi//2)(theta/sintheta)^2d theta=

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

Evaluate: int_0^(pi//2)sqrt(costheta)sin^3theta d theta

The value of the integral int_(0)^(2pi)(sin2 theta)/(a-b cos theta)d theta when a gt b gt 0 , is

Evaluate int_(0)^(pi//2) cos theta tan ^(-1) ( sin theta)d theta .

Evaluate: int_0^(pi//2)(costheta)/((1+sintheta)(2+sintheta)) d theta

If int_0^(pi/2)logsinthetad theta=k , then find the value of int_0^(pi/2)(theta/(sintheta))^2d theta in terms of k