Home
Class 12
MATHS
lim(xrarroo)((int(0)^(x)e^(t^(2))dt)^(2)...

`lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt)` is equal to

A

1

B

0

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \frac{\left(\int_{0}^{x} e^{t^2} dt\right)^2}{\int_{0}^{x} e^{2t^2} dt} \] we will evaluate the integrals in the numerator and denominator separately. ### Step 1: Evaluate the numerator The numerator is \[ \left(\int_{0}^{x} e^{t^2} dt\right)^2 \] Using L'Hôpital's Rule, we first find the derivative of the integral. By the Fundamental Theorem of Calculus, we have: \[ \frac{d}{dx}\left(\int_{0}^{x} e^{t^2} dt\right) = e^{x^2} \] Thus, the derivative of the square is: \[ \frac{d}{dx}\left(\int_{0}^{x} e^{t^2} dt\right)^2 = 2\left(\int_{0}^{x} e^{t^2} dt\right)e^{x^2} \] ### Step 2: Evaluate the denominator The denominator is \[ \int_{0}^{x} e^{2t^2} dt \] Again, using the Fundamental Theorem of Calculus, we find: \[ \frac{d}{dx}\left(\int_{0}^{x} e^{2t^2} dt\right) = e^{2x^2} \] ### Step 3: Apply L'Hôpital's Rule Now we can apply L'Hôpital's Rule since both the numerator and denominator approach infinity as \( x \to \infty \): \[ \lim_{x \to \infty} \frac{2\left(\int_{0}^{x} e^{t^2} dt\right)e^{x^2}}{e^{2x^2}} \] ### Step 4: Simplify the limit This simplifies to: \[ \lim_{x \to \infty} \frac{2\left(\int_{0}^{x} e^{t^2} dt\right)}{e^{x^2}} \] ### Step 5: Analyze the behavior of the integral As \( x \to \infty \), the integral \( \int_{0}^{x} e^{t^2} dt \) grows very quickly, but we need to understand its growth relative to \( e^{x^2} \). Using the asymptotic behavior of the integral, we can say that: \[ \int_{0}^{x} e^{t^2} dt \sim \frac{e^{x^2}}{2x} \] Thus, we can substitute this approximation into our limit: \[ \lim_{x \to \infty} \frac{2 \cdot \frac{e^{x^2}}{2x}}{e^{x^2}} = \lim_{x \to \infty} \frac{1}{x} \] ### Step 6: Final limit As \( x \to \infty \), \( \frac{1}{x} \to 0 \). Thus, the final answer is: \[ \lim_{x \to \infty} \frac{\left(\int_{0}^{x} e^{t^2} dt\right)^2}{\int_{0}^{x} e^{2t^2} dt} = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

lim_(x to oo)(int_0^(2x) te^(t^(2))dt)/(e^(4x^(2))) equals

Prove that int_(0)^(x)e^(xt)e^(-t^(2))dt=e^(x^(2)//4)int_(0)^(x)e^(-t^(2)//4)dt .

lim_(xrarr(pi)/(4)) (int_(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/(16)) is equal to

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

lim_(x rarr infty) (x^(3) int_(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) dt) is equal to

Prove that int_0^x e^(x t-t^2) dt=e^(x^(2)/4)int_0^x e^-(t^(2)/4)dt