Home
Class 12
MATHS
Let Tgt0 be a fixed real number. Suppose...

Let `Tgt0` be a fixed real number. Suppose `f` is continous function such that for all `xepsilonR,f(x+T)=f(x)`. If `I=int_(0)^(T)f(x)dx`, then the value of `int_(3)^(3+3T)f(2x)dx` is

A

`(3)/(2)l`

B

2l

C

3l

D

6l

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let T >0 be a fixed real number. Suppose f is continuous function such that for all x in R ,f(x+T)=f(x)dot If I=int_0^Tf(x)dx , then the value of int_3^(3+3T)f(2x)dx is (a) 3/2I (b) 2I (c) 3I (d) 6I

Let T >0 be a fixed real number. Suppose f is continuous function such that for all x in R ,f(x+T)=f(x)dot If I=int_0^Tf(x)dx , then the value of int_3^(3+3T)f(2x)dx is 3/2I (b) 2I (c) 3I (d) 6I

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 and (f(x))^(2020)=1+int_(0)^(x) f(t) dt , then the value of {f(2020)}^(2019) is equal to

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, then the value of int_(0)^(pi//2) {f(2x)-f''(2x)}sin x cos x dx is equal to

Let f(x) = int_(0)^(x)|2t-3|dt , then f is