Home
Class 12
MATHS
Let f(x)=int(2)^(x)f(t^(2)-3t+4)dt. Then...

Let `f(x)=int_(2)^(x)f(t^(2)-3t+4)dt`. Then

A

`f(2)=0`

B

`f(-2)=0`

C

`f'(2)=0`

D

`f'(2)-2`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1ltxlt3 then the maximum value of f(x) is

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^2-3t+2)dt,x in [1,3] Then the range of f(x), is

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int_(1)^(x) (log t)/(1+t) dt Then F (e) equals

Let f(x)=1/x^2 int_4^x (4t^2-2f'(t))dt then find 9f'(4)

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in