Home
Class 12
MATHS
If f(x)=int(x)^(x^(2))(dt)/((logt)^(2)),...

If `f(x)=int_(x)^(x^(2))(dt)/((logt)^(2)),xne0` then `f(x)` is

A

monotonically increasing in `(2,oo)`

B

monotonically decreasing in (1, 2)

C

monotonically decreasing in `(2,oo)`

D

monotonically decreasing in (0, 1)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( f(x) = \int_{x}^{x^2} \frac{dt}{(\log t)^2} \) for \( x \neq 0 \), we will use Leibniz's rule for differentiation under the integral sign. ### Step-by-Step Solution: **Step 1: Apply Leibniz's Rule** Leibniz's rule states that if \( F(x) = \int_{a(x)}^{b(x)} f(t) dt \), then the derivative \( F'(x) \) is given by: \[ F'(x) = f(b(x)) \cdot b'(x) - f(a(x)) \cdot a'(x) \] In our case: - \( a(x) = x \) - \( b(x) = x^2 \) - \( f(t) = \frac{1}{(\log t)^2} \) **Step 2: Calculate the Derivatives of the Limits** We need to find the derivatives of the limits: - \( a'(x) = 1 \) - \( b'(x) = 2x \) **Step 3: Evaluate the Function at the Limits** Now we evaluate \( f(t) \) at the limits: - At the upper limit \( b(x) = x^2 \): \[ f(b(x)) = f(x^2) = \frac{1}{(\log(x^2))^2} = \frac{1}{(2 \log x)^2} = \frac{1}{4 (\log x)^2} \] - At the lower limit \( a(x) = x \): \[ f(a(x)) = f(x) = \frac{1}{(\log x)^2} \] **Step 4: Substitute into Leibniz's Rule** Now substituting into Leibniz's rule: \[ f'(x) = f(x^2) \cdot b'(x) - f(x) \cdot a'(x) \] \[ f'(x) = \frac{1}{4 (\log x)^2} \cdot (2x) - \frac{1}{(\log x)^2} \cdot (1) \] \[ f'(x) = \frac{2x}{4 (\log x)^2} - \frac{1}{(\log x)^2} \] \[ f'(x) = \frac{x}{2 (\log x)^2} - \frac{1}{(\log x)^2} \] **Step 5: Combine the Terms** Combine the terms over a common denominator: \[ f'(x) = \frac{x - 2}{2 (\log x)^2} \] **Step 6: Analyze the Sign of \( f'(x) \)** To determine where \( f(x) \) is increasing or decreasing, we analyze the sign of \( f'(x) \): - \( f'(x) > 0 \) when \( x - 2 > 0 \) or \( x > 2 \) (function is increasing). - \( f'(x) < 0 \) when \( x - 2 < 0 \) or \( x < 2 \) (function is decreasing). ### Conclusion Thus, \( f(x) \) is: - Monotonically increasing for \( x > 2 \) - Monotonically decreasing for \( 0 < x < 2 \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2)) , AAx ge 1 , then f(2) is equal to

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If F(x) = int_(x^(2))^(x^(3))(1)/(lnt) dt then find F'(e )

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

If F(x) = int_(x)^(x^(2))sqrt(tant)dt , then find F'(x) .

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt , then find the interval in which f(x) increases.

If f(x)=log|2x|,xne0 then f'(x) is equal to

If f(x)=int_((1)/(x))^(sqrt(x))cost^(2)dt(xgt0)" then "(df(x))/(dx) is

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to: