Home
Class 12
MATHS
The value of the integral int(0)^(npi+v)...

The value of the integral `int_(0)^(npi+v)|sinx|dx" where "ninNand0levlepi` is

A

`(2n+1-sinv)`

B

`(2n-1-cosv)`

C

`(2n+1-cosv)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2)x[x]dx

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of integral int_0^pi xf(sinx)dx=

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

int_(0)^((14pi)/3) |sinx|dx

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

The value of the integral int _0^oo 1/(1+x^4)dx is

The value of the integral int_(0)^(pi//2) sin 2n x cot x dx, where n is a positive integer, is