Home
Class 12
MATHS
If int(0)^(x^(2)(1+x))f(t)dt=x, then the...

If `int_(0)^(x^(2)(1+x))f(t)dt=x`, then the value of f(2) is.

Text Solution

Verified by Experts

The correct Answer is:
5
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 and (f(x))^(2020)=1+int_(0)^(x) f(t) dt , then the value of {f(2020)}^(2019) is equal to

Let f:R in R be a continuous function such that f(1)=2. If lim_(x to 1) int_(2)^(f(x)) (2t)/(x-1)dt=4 , then the value of f'(1) is

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

If f(x)=-int_(0)^(x) log (cos t) dt, then the value of f(x)-2f((pi)/(4)+(x)/(2))+2f((pi)/(4)-(x)/(2)) is equal to

Given a function g, continous everywhere such that g (1)=5 and int _(0)^(1) g (t) dt =2. If f (x) =1/2 int _(0) ^(x) (x -t)^(2) g (t) dt, then find the value of f '(1)+f''(1).

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to: