Home
Class 12
MATHS
Evaluate lim(nrarroo)(2)/(n)(sin.(pi)/...

Evaluate
`lim_(nrarroo)(2)/(n)(sin.(pi)/(2n)+sin.(2pi)/(2n)+sin.(3pi)/(2n)+....+sin.(npi)/(2n))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{n \to \infty} \frac{2}{n} \left( \sin\left(\frac{\pi}{2n}\right) + \sin\left(\frac{2\pi}{2n}\right) + \sin\left(\frac{3\pi}{2n}\right) + \ldots + \sin\left(\frac{n\pi}{2n}\right) \right), \] we can follow these steps: ### Step 1: Rewrite the sum The sum inside the limit can be expressed as: \[ \sum_{k=1}^{n} \sin\left(\frac{k\pi}{2n}\right). \] ### Step 2: Use the limit definition of Riemann sums As \( n \to \infty \), the expression \(\frac{k\pi}{2n}\) approaches 0 for each \( k \). We can relate this sum to a Riemann integral. The term \(\frac{2}{n}\) can be thought of as the width of each subinterval in the Riemann sum, and the sum itself can be approximated by the integral of \(\sin(x)\) from 0 to \(\frac{\pi}{2}\). ### Step 3: Change the variable Let \( x = \frac{k\pi}{2n} \). Then, \( k = \frac{2nx}{\pi} \) and \( \Delta x = \frac{\pi}{2n} \). The limit can be rewritten as: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \sin\left(\frac{k\pi}{2n}\right) \cdot \frac{2}{n} = \lim_{n \to \infty} \sum_{k=1}^{n} \sin(x) \cdot \Delta x. \] ### Step 4: Evaluate the integral As \( n \to \infty \), this sum approaches the integral: \[ \int_{0}^{\frac{\pi}{2}} \sin(x) \, dx. \] ### Step 5: Calculate the integral The integral of \(\sin(x)\) is: \[ -\cos(x) \bigg|_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = 0 + 1 = 1. \] ### Step 6: Conclusion Thus, the limit evaluates to: \[ \lim_{n \to \infty} \frac{2}{n} \left( \sin\left(\frac{\pi}{2n}\right) + \sin\left(\frac{2\pi}{2n}\right) + \ldots + \sin\left(\frac{n\pi}{2n}\right) \right) = 1. \] ### Final Answer The final result is: \[ \boxed{1}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(nrarrinfty) ("sin"(pi)/(2n)."sin"(2pi)/(2n)."sin"(3pi)/(2n)..."sin"((n-1)pi)/(2n))^(1//n) is equal to

Evaluate: lim_(n->oo)ncos(pi/(4n))sin(pi/(4n))

Evaluate lim_(ntooo)ncos((pi)/(4n))sin((pi)/(4n)).

Evaluate: (lim_(n->oo)ncos(pi/(4n))sin(pi/(4n))

The value of lim_(nrarroo) 1/n^2[sin^(3)'(pi)/(4n)+2sin^(3)'(2pi)/(4n)+3sin^(3)'(3pi)/(4n)+"......."+n sin^(3)'(npi)/(4n)]

Let 1, z_(1),z_(2),z_(3),…., z_(n-1) be the nth roots of unity. Then prove that (1-z_(1))(1 - z_(2)) …. (1-z_(n-1))= n . Also,deduce that sin .(pi)/(n) sin.(2pi)/(pi)sin.(3pi)/(n)...sin.((n-1)pi)/(n) = (pi)/(2^(n-1))

Let 1, z_(1),z_(2),z_(3),…., z_(n-1) be the nth roots of unity. Then prove that (1-z_(1))(1 - z_(2)) …. (1-z_(n-1))= n . Also,deduce that sin .(pi)/(n) sin.(2pi)/(pi)sin.(3pi)/(n)...sin.((n-1)pi)/(n) = (pi)/(2^(n-1))

Evaluate: lim_(n->oo)sin^n((2pin)/(3n+1)),n in Ndot

lim_(n->oo)2^(n-1)sin(a/2^n)

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to