Home
Class 12
MATHS
underset(nrarroo)lim[(1)/(n)+(n^(2))/((n...

`underset(nrarroo)lim[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)]` is equal to

Text Solution

Verified by Experts

The correct Answer is:
`(3)/(8)`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

underset(nrarroo)lim[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+(n+3)/(n^(2)+3^(2))+...+(1)/(n)]

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)/(n)]

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

underset(nrarroo)"lim"[sin'(pi) /(n)+sin'(2pi) /(n)+"......"+sin((n-1))/(n) pi ] is equal to :

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

If lim_(nrarroo)Sigma_(r=1)^(2n)(3r^(2))/(n^(3))e^((r^(3))/(n^(3)))=e^(a)-e^(b) , then a+b is equal to