Home
Class 12
MATHS
int(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx...

`int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(2)log2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(1)((tan^(-1)x)^(2))/(1+x^(2))dx

Evaluate : int_(0)^(1)(tan^(-1)x)/(1+x^2)dx

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

int_(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx is equal to

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

int_(0)^( 1)(tan^(-1)x)^(2)/(1+x^2)dx

2) int_(0)^(1)tan^(-1)(1-x+x^(2))dx

I=int_(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)dx

Let I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx , then

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)x dx