Home
Class 12
MATHS
Evaluate int(-4) ^3 |x^2 -4|dx...

Evaluate `int_(-4) ^3 |x^2 -4|dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{-4}^{3} |x^2 - 4| \, dx \), we will follow these steps: ### Step 1: Identify where the expression inside the absolute value is zero We start by finding the points where \( x^2 - 4 = 0 \): \[ x^2 = 4 \implies x = \pm 2 \] This means the expression \( |x^2 - 4| \) changes at \( x = -2 \) and \( x = 2 \). ### Step 2: Break the integral into intervals We will break the integral into three parts based on the points we found: 1. From \( -4 \) to \( -2 \) 2. From \( -2 \) to \( 2 \) 3. From \( 2 \) to \( 3 \) Thus, we can write: \[ \int_{-4}^{3} |x^2 - 4| \, dx = \int_{-4}^{-2} |x^2 - 4| \, dx + \int_{-2}^{2} |x^2 - 4| \, dx + \int_{2}^{3} |x^2 - 4| \, dx \] ### Step 3: Determine the sign of \( x^2 - 4 \) in each interval - For \( x \in [-4, -2] \): \( x^2 - 4 \) is positive, so \( |x^2 - 4| = x^2 - 4 \). - For \( x \in [-2, 2] \): \( x^2 - 4 \) is negative, so \( |x^2 - 4| = -(x^2 - 4) = 4 - x^2 \). - For \( x \in [2, 3] \): \( x^2 - 4 \) is positive, so \( |x^2 - 4| = x^2 - 4 \). ### Step 4: Rewrite the integral with the correct expressions Now we can rewrite the integral: \[ \int_{-4}^{3} |x^2 - 4| \, dx = \int_{-4}^{-2} (x^2 - 4) \, dx + \int_{-2}^{2} (4 - x^2) \, dx + \int_{2}^{3} (x^2 - 4) \, dx \] ### Step 5: Evaluate each integral 1. **First Integral**: \[ \int_{-4}^{-2} (x^2 - 4) \, dx = \left[ \frac{x^3}{3} - 4x \right]_{-4}^{-2} \] Evaluating at the limits: \[ = \left( \frac{(-2)^3}{3} - 4(-2) \right) - \left( \frac{(-4)^3}{3} - 4(-4) \right) = \left( -\frac{8}{3} + 8 \right) - \left( -\frac{64}{3} + 16 \right) = \left( -\frac{8}{3} + \frac{24}{3} \right) - \left( -\frac{64}{3} + \frac{48}{3} \right) = \frac{16}{3} + \frac{16}{3} = \frac{32}{3} \] 2. **Second Integral**: \[ \int_{-2}^{2} (4 - x^2) \, dx = \left[ 4x - \frac{x^3}{3} \right]_{-2}^{2} \] Evaluating at the limits: \[ = \left( 4(2) - \frac{(2)^3}{3} \right) - \left( 4(-2) - \frac{(-2)^3}{3} \right) = \left( 8 - \frac{8}{3} \right) - \left( -8 + \frac{8}{3} \right) = \left( \frac{24}{3} - \frac{8}{3} \right) + \left( 8 - \frac{8}{3} \right) = \frac{16}{3} + \frac{24}{3} = \frac{40}{3} \] 3. **Third Integral**: \[ \int_{2}^{3} (x^2 - 4) \, dx = \left[ \frac{x^3}{3} - 4x \right]_{2}^{3} \] Evaluating at the limits: \[ = \left( \frac{(3)^3}{3} - 4(3) \right) - \left( \frac{(2)^3}{3} - 4(2) \right) = \left( 9 - 12 \right) - \left( \frac{8}{3} - 8 \right) = -3 + \left( 8 - \frac{8}{3} \right) = -3 + \frac{24}{3} - \frac{8}{3} = -3 + \frac{16}{3} = -\frac{9}{3} + \frac{16}{3} = \frac{7}{3} \] ### Step 6: Combine all parts Now we combine all the results: \[ \int_{-4}^{3} |x^2 - 4| \, dx = \frac{32}{3} + \frac{40}{3} + \frac{7}{3} = \frac{79}{3} \] ### Final Answer Thus, the final result is: \[ \int_{-4}^{3} |x^2 - 4| \, dx = \frac{79}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_(-1)^(4)3dx

Evaluate : int_(4)^(5)|x-5|dx

Evaluate : int_(4)^(5)|x-5|dx

Evaluate int_(0)^(3)(x^(2)-4)dx

Evaluate: int(3x-4\ x^3)\ dx

Evaluate: int_(4)^(1)1/x dx

Evaluate :- int_(0)^(1)(3x^(2)+4)dx

Evaluate: int(x-3)/(x^2+2x-4)\ dx

Evaluate: int(x^2+4)\ dx

Evaluate: int(x-1)/(4x^2-4x+3)\ dx