Home
Class 12
MATHS
If g(x)=int(0)^(x)cos^(4)t dt, then g(x+...

If `g(x)=int_(0)^(x)cos^(4)t dt,` then `g(x+pi)` equals to (a)`(g(x))/(g(pi))` (b)`g(x)+g(pi)` (c)`g(x)-g(pi)` (d)`g(x).g(pi)`

Text Solution

Verified by Experts

The correct Answer is:
`g(x)+g(pi)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=int_0^xcos^4tdt , then g(x+pi) equals (a) g(x)+g(pi) (b) g(x)-g(pi) (c) g(x)g(pi) (d) (g(x))/(g(pi))

If g(x)=int_(0)^(x)cos^(4)t dt , then prove that g(x+pi)=g(x)+g(pi) .

If g(x)""=int0xcos4t"dt" , then g(x""+pi) equals: (1) g(x)/(g(pi) (2) g(x)+g(pi) (3) g(x)-g(pi) (4) g(x)dotg(pi)

If g(x)=int_0^x(|sint|+|cost|)dt ,then g(x+(pin)/2) is equal to, where n in N , (a) g(x)+g(pi) (b) g(x)+g((npi)/(2)) (c) g(x)+g(pi/2) (d) none of these

If g(x)=int_0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, where n in N , a) g(x)+g(pi) (b) g(x)+ng((pi)/(n2)) c) g(x)+g(pi/2) (d) none of these

If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))

If g(x)=int_(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(pi/2)=-2pi (b) g^(prime)(-pi/2)=-2pi (c) g^(prime)(-pi/2)=2pi (d) g^(prime)(pi/2)=2pi

If (x-1) is a factor of polynomial f(x) but not of g(x) , then it must be a factor of (a) f(x)g(x) (b) -f\ (x)+\ g(x) (c) f(x)-g(x) (d) {f(x)+g(x)}g(x)

If differentiable function f(x) in inverse of g(x) then f^(g(x)) is equal to (g^(x))/((g^(prime)(x))^3) 2. 0 3. (g^(x))/((g^(prime)(x))^2) 4. 1

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to (A) f(a) = g(c ) (B) f(b) = g(b) (C) f(d) = g(b) (D) f(c ) = g(a)