Home
Class 12
MATHS
Evaluate int(-2)^(4)x[x]dx where [.]...

Evaluate
`int_(-2)^(4)x[x]dx`
where [.] denotes the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{-2}^{4} x \lfloor x \rfloor \, dx \), where \( \lfloor x \rfloor \) denotes the greatest integer function, we will break the integral into segments based on the behavior of the greatest integer function. ### Step 1: Identify the intervals based on the greatest integer function The greatest integer function \( \lfloor x \rfloor \) takes constant integer values over intervals. We can identify the intervals where \( \lfloor x \rfloor \) is constant: - From \( -2 \) to \( -1 \): \( \lfloor x \rfloor = -2 \) - From \( -1 \) to \( 0 \): \( \lfloor x \rfloor = -1 \) - From \( 0 \) to \( 1 \): \( \lfloor x \rfloor = 0 \) - From \( 1 \) to \( 2 \): \( \lfloor x \rfloor = 1 \) - From \( 2 \) to \( 3 \): \( \lfloor x \rfloor = 2 \) - From \( 3 \) to \( 4 \): \( \lfloor x \rfloor = 3 \) ### Step 2: Break the integral into segments We can express the integral as a sum of integrals over these intervals: \[ \int_{-2}^{4} x \lfloor x \rfloor \, dx = \int_{-2}^{-1} x(-2) \, dx + \int_{-1}^{0} x(-1) \, dx + \int_{0}^{1} x(0) \, dx + \int_{1}^{2} x(1) \, dx + \int_{2}^{3} x(2) \, dx + \int_{3}^{4} x(3) \, dx \] ### Step 3: Evaluate each integral Now we will evaluate each integral separately. 1. **From \( -2 \) to \( -1 \)**: \[ \int_{-2}^{-1} x(-2) \, dx = -2 \int_{-2}^{-1} x \, dx = -2 \left[ \frac{x^2}{2} \right]_{-2}^{-1} = -2 \left( \frac{(-1)^2}{2} - \frac{(-2)^2}{2} \right) = -2 \left( \frac{1}{2} - 2 \right) = -2 \left( \frac{1}{2} - \frac{4}{2} \right) = -2 \left( -\frac{3}{2} \right) = 3 \] 2. **From \( -1 \) to \( 0 \)**: \[ \int_{-1}^{0} x(-1) \, dx = -\int_{-1}^{0} x \, dx = -\left[ \frac{x^2}{2} \right]_{-1}^{0} = -\left( 0 - \frac{(-1)^2}{2} \right) = -\left( -\frac{1}{2} \right) = \frac{1}{2} \] 3. **From \( 0 \) to \( 1 \)**: \[ \int_{0}^{1} x(0) \, dx = 0 \] 4. **From \( 1 \) to \( 2 \)**: \[ \int_{1}^{2} x(1) \, dx = \int_{1}^{2} x \, dx = \left[ \frac{x^2}{2} \right]_{1}^{2} = \left( \frac{2^2}{2} - \frac{1^2}{2} \right) = \left( 2 - \frac{1}{2} \right) = \frac{3}{2} \] 5. **From \( 2 \) to \( 3 \)**: \[ \int_{2}^{3} x(2) \, dx = 2 \int_{2}^{3} x \, dx = 2 \left[ \frac{x^2}{2} \right]_{2}^{3} = \left( 3^2 - 2^2 \right) = 9 - 4 = 5 \] 6. **From \( 3 \) to \( 4 \)**: \[ \int_{3}^{4} x(3) \, dx = 3 \int_{3}^{4} x \, dx = 3 \left[ \frac{x^2}{2} \right]_{3}^{4} = 3 \left( \frac{4^2}{2} - \frac{3^2}{2} \right) = 3 \left( \frac{16}{2} - \frac{9}{2} \right) = 3 \left( \frac{7}{2} \right) = \frac{21}{2} \] ### Step 4: Combine all results Now we can combine all the results from the segments: \[ \int_{-2}^{4} x \lfloor x \rfloor \, dx = 3 + \frac{1}{2} + 0 + \frac{3}{2} + 5 + \frac{21}{2} \] Calculating this step by step: \[ 3 + \frac{1}{2} + \frac{3}{2} + 5 + \frac{21}{2} = 3 + 5 + \left( \frac{1 + 3 + 21}{2} \right) = 8 + \frac{25}{2} = 8 + 12.5 = 20.5 \] ### Final Answer Thus, the value of the integral is: \[ \int_{-2}^{4} x \lfloor x \rfloor \, dx = 20.5 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of the integral int_(0)^(0.9) [x-2[x]] dx , where [.] denotes the greatest integer function, is

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

Evaluate int_(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest integer function.

The value of int_(-2)^1([x]+|x-3|)dx is (where [.] denotes greatest integer function) (15)/2 (2) 5/2 (3) (13)/2 (4) 9/2

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.