Home
Class 12
MATHS
Evaluate int(0)^(oo)[(3)/(x^(2)+1)]dx ...

Evaluate
`int_(0)^(oo)[(3)/(x^(2)+1)]dx`
where [.] denotes the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\infty} \left\lfloor \frac{3}{x^2 + 1} \right\rfloor \, dx \] where \(\left\lfloor . \right\rfloor\) denotes the greatest integer function, we need to analyze the function \(\frac{3}{x^2 + 1}\). ### Step 1: Determine the range of \(\frac{3}{x^2 + 1}\) 1. **Find the maximum value of \(\frac{3}{x^2 + 1}\)**: - The function \(\frac{3}{x^2 + 1}\) is a decreasing function for \(x \geq 0\). - When \(x = 0\), \(\frac{3}{0^2 + 1} = 3\). - As \(x \to \infty\), \(\frac{3}{x^2 + 1} \to 0\). - Therefore, the maximum value is \(3\) at \(x = 0\). 2. **Find the value of \(x\) where \(\frac{3}{x^2 + 1} = 2\)**: - Set \(\frac{3}{x^2 + 1} = 2\): \[ 3 = 2(x^2 + 1) \implies 3 = 2x^2 + 2 \implies 2x^2 = 1 \implies x^2 = \frac{1}{2} \implies x = \frac{1}{\sqrt{2}}. \] 3. **Find the value of \(x\) where \(\frac{3}{x^2 + 1} = 1\)**: - Set \(\frac{3}{x^2 + 1} = 1\): \[ 3 = x^2 + 1 \implies x^2 = 2 \implies x = \sqrt{2}. \] ### Step 2: Define intervals based on the greatest integer function - For \(0 \leq x < \frac{1}{\sqrt{2}}\), \(\frac{3}{x^2 + 1} \geq 2\) and thus \(\left\lfloor \frac{3}{x^2 + 1} \right\rfloor = 2\). - For \(\frac{1}{\sqrt{2}} \leq x < \sqrt{2}\), \(\frac{3}{x^2 + 1} < 2\) and \(\geq 1\) so \(\left\lfloor \frac{3}{x^2 + 1} \right\rfloor = 1\). - For \(x \geq \sqrt{2}\), \(\frac{3}{x^2 + 1} < 1\) so \(\left\lfloor \frac{3}{x^2 + 1} \right\rfloor = 0\). ### Step 3: Break the integral into parts Now we can break the integral into three parts: \[ I = \int_{0}^{\frac{1}{\sqrt{2}}} 2 \, dx + \int_{\frac{1}{\sqrt{2}}}^{\sqrt{2}} 1 \, dx + \int_{\sqrt{2}}^{\infty} 0 \, dx. \] ### Step 4: Evaluate each integral 1. **First integral**: \[ \int_{0}^{\frac{1}{\sqrt{2}}} 2 \, dx = 2 \left[ x \right]_{0}^{\frac{1}{\sqrt{2}}} = 2 \left( \frac{1}{\sqrt{2}} - 0 \right) = \frac{2}{\sqrt{2}} = \sqrt{2}. \] 2. **Second integral**: \[ \int_{\frac{1}{\sqrt{2}}}^{\sqrt{2}} 1 \, dx = \left[ x \right]_{\frac{1}{\sqrt{2}}}^{\sqrt{2}} = \sqrt{2} - \frac{1}{\sqrt{2}} = \sqrt{2} - \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}. \] 3. **Third integral**: \[ \int_{\sqrt{2}}^{\infty} 0 \, dx = 0. \] ### Step 5: Combine results Now, we combine the results of the integrals: \[ I = \sqrt{2} + \frac{1}{\sqrt{2}} + 0 = \sqrt{2} + \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{3}{\sqrt{2}}. \] ### Final Answer Thus, the value of the integral is \[ \boxed{\frac{3}{\sqrt{2}}}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

rArrint_(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest integer function) equals

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

Evaluate: int_0^((5pi)/(12))[tanx]dx , where [dot] denotes the greatest integer function.

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

Evaluate int_(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest integer function.

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)