Home
Class 12
MATHS
Evaluate int(o)^(2pi)[sin x]dx, where [....

Evaluate `int_(o)^(2pi)[sin x]dx`, where `[.]` denotes the greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
`(n+1)pi-x`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate -int_(3pi//2)^(pi//2)[2sinx]dx , when [.] denotes the greatest integer function.

Evaluate int_(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest integer function.

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

Evaluate:- int_0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.