Home
Class 12
MATHS
Evaluate int(4)^(6)([x^(2)])/([x^(2)-2...

Evaluate
`int_(4)^(6)([x^(2)])/([x^(2)-20x+100]+[x^(2)])dx`
where [.] denotes the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{4}^{6} \frac{[x^2]}{[x^2 - 20x + 100] + [x^2]} \, dx \] where \([.]\) denotes the greatest integer function, we will follow a systematic approach. ### Step 1: Simplify the expression inside the integral First, we recognize that: \[ x^2 - 20x + 100 = (x - 10)^2 \] Thus, we can rewrite the integral as: \[ I = \int_{4}^{6} \frac{[x^2]}{[(x - 10)^2] + [x^2]} \, dx \] ### Step 2: Identify the greatest integer values Next, we need to evaluate the values of \([x^2]\) and \([(x - 10)^2]\) for \(x\) in the interval \([4, 6]\). - For \(x = 4\), \(x^2 = 16\) and \([x^2] = 16\). - For \(x = 5\), \(x^2 = 25\) and \([x^2] = 25\). - For \(x = 6\), \(x^2 = 36\) and \([x^2] = 36\). Now, we calculate \((x - 10)^2\): - For \(x = 4\), \((4 - 10)^2 = 36\) and \([(x - 10)^2] = 36\). - For \(x = 5\), \((5 - 10)^2 = 25\) and \([(x - 10)^2] = 25\). - For \(x = 6\), \((6 - 10)^2 = 16\) and \([(x - 10)^2] = 16\). ### Step 3: Evaluate the integral using symmetry Using the property of definite integrals, we can apply the transformation \(x \to 10 - x\): \[ I = \int_{4}^{6} \frac{[x^2]}{[(x - 10)^2] + [x^2]} \, dx = \int_{4}^{6} \frac{[10 - x]^2}{[x^2]} \, dx \] This means we can express the integral as: \[ I = \int_{4}^{6} \frac{[10 - x]^2}{[(10 - x - 10)^2] + [10 - x]^2} \, dx \] ### Step 4: Combine the two integrals Adding the two forms of the integral gives: \[ 2I = \int_{4}^{6} \left( \frac{[x^2]}{[(x - 10)^2] + [x^2]} + \frac{[10 - x]^2}{[(10 - x - 10)^2] + [10 - x]^2} \right) \, dx \] The denominators are the same, and thus we can simplify: \[ 2I = \int_{4}^{6} 1 \, dx \] ### Step 5: Evaluate the integral Now we compute: \[ 2I = \int_{4}^{6} 1 \, dx = [x]_{4}^{6} = 6 - 4 = 2 \] Thus, we have: \[ I = \frac{2}{2} = 1 \] ### Final Answer The value of the integral is \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

The value of int _(1)^(2)(x^([x^(2)])+[x^(2)]^(x)) d x is equal to where [.] denotes the greatest integer function

Solve x^2-4x-[x]=0 (where [] denotes the greatest integer function).

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to