Home
Class 12
MATHS
If int(ln2)^x(dt)/(sqrt(e^t-1))=pi/6, t...

If `int_(ln2)^x(dt)/(sqrt(e^t-1))=pi/6`, then `x=`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(1)^(x) (dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6) , then x can be equal to :

The solution for x of the equation int_(sqrt(2))^x(dt)/(tsqrt(t^2-1))=pi/2 is: (1) 2 (2) pi (3) (sqrt(3))/2 (4) 2sqrt(2)

The solution for x of the equation int_(sqrt(2))^x(dt)/(tsqrt(t^2-1))=pi/2 is pi (b) (sqrt(3))/2 (c) 2sqrt(2) (d) none of these

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Find the equation of tangent to y=int_(x^2)^(x^3)(dt)/(sqrt(1+t^2))a tx=1.

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If int_(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

If x=int_(0)^(y)(1)/(sqrt(1+4t^(2))) dt, then (d^(2)y)/(dx^(2)) , is

If x=int_(0)^(oo)(dt)/((1+t^(2))(1+t^(2017))) , then (3x)/(pi) is equal to