Home
Class 12
MATHS
Prove that int(1)^(e)(lnx)^(4)dx=9e-24....

Prove that `int_(1)^(e)(lnx)^(4)dx=9e-24`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(3)e^(4x+1)dx

Prove that int_(0)^(25)e^(x-[x])dx=25(e-1) .

int_(-1)^(2) e^(-x)dx

Prove that int_(0)^(x)e^(xt)e^(-t^(2))dt=e^(x^(2)//4)int_(0)^(x)e^(-t^(2)//4)dt .

Prove that 1 le int_(0)^(1) e^(x^(2))dxle e

int_(-1)^(1)e^(2x)dx

Prove that int_0^1x e^x dx=1

Prove that : int_(0)^(oo) log (x+(1)/(x)). (dx)/(1+x^(2)) = pi log_(e) 2

int(1)/(e^(-x)) dx

Evaluate : int_(-1)^(1)e^(x)dx