Home
Class 12
MATHS
Prove that int(0)^(x)[t]dt=([x]([x]-1))/...

Prove that `int_(0)^(x)[t]dt=([x]([x]-1))/2+[x](x-[x]),` where [.] denotes the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve x^2-4x-[x]=0 (where [] denotes the greatest integer function).

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)=1/([abs(x-2}]+[abs(x-10)]-8) where [*] denotes the greatest integer function.