Home
Class 12
MATHS
Ifint(-pi/4)^((3pi)/4)(e^(pi/4)dx)/((e^x...

`Ifint_(-pi/4)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx))=kint_(-pi/2)^(pi/2)secx dx` , then the value of k is (a) `1/2` (b) `1/(sqrt(2))` (c) `1/(2sqrt(2))` (d) `-1/(sqrt(2))`

A

`(1)/(2)`

B

`(1)/(sqrt(2))`

C

`(1)/(2sqrt(2))`

D

`-(1)/(sqrt(2))`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Ifint_(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint_(-pi/2)^(pi/2)secx dx ,t h e nt h ev a l u eofki s 1/2 (b) 1/(sqrt(2)) (c) 1/(2sqrt(2)) (d) -1/(sqrt(2))

int_(-pi/4)^(pi/4)(secx)/(1+2^(x))dx .

The value of int_(-pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

Evaluate int_(0)^(pi//4)(e^(secx)[sin(x+(pi)/(4))])/(cosx(1-sin x))dx

I_(1)=int_(0)^((pi)/2)Ln (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)Ln(sinx+cosx)dx . Then

int_(pi//3)^(pi//2) (sqrt(1+cosx))/((1-cosx)^(5//2))\ dx

If I=int_(0)^(3pi//4) ((1+x)sinx+(1-x)cosx)dx , then the value of (sqrt(2)-1)I is_______

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

int_(0)^(pi//2)(dx)/(1+e^(sqrt(2)cos(x+(pi)/(4)))) is equal to

Evaluate: int_-(pi/4)^((3pi)/4) (sqrt(2)[1+sin(x-pi/4)])/(sqrt(2)-cos|x|+sin|x|)dx