Home
Class 12
MATHS
int(0)^(pi//2n)(dx)/(1+(cotnx)^(n)) is e...

`int_(0)^(pi//2n)(dx)/(1+(cotnx)^(n))` is equal to `(ninN)`

A

`(npi)/(4)`

B

`(pi)/(2n)`

C

`(pi)/(4n)`

D

`(2pi)/(n)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2n)(dx)/(1+(tan nx)^(n)) is equal to n in N :

int(dx)/(x(x^n+1)) is equal to

int_(0)^(pi//2)(dx)/(1+e^(sqrt(2)cos(x+(pi)/(4)))) is equal to

For any n in N, int_(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

If n=2m+1,m in N uu {0}, then int_0^(pi/2)(sin nx)/(sin x) dx is equal to (i) pi (ii) pi/2 (iii) pi/4 (iv) none of these

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

The value of int_(0)^(pi//2n) (1)/(1+cot nx)dx , is

int_(0)^(pi//8) tan^(2) 2x dx is equal to

If m, n in N , then int_(0)^(pi//2)((sin^(m)x)^(1/n))/((sin^(m)x)^(1/n)+(cos^(m)x)^(1/n))dx is equal to

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to