Home
Class 12
MATHS
If f((1)/(x))+x^(2)f(x)=0,AAxgt0 then in...

If `f((1)/(x))+x^(2)f(x)=0,AAxgt0` then `int_(sinx)^(cosecx)f(z)dz` is for `x in(0,(pi)/(2))` is equal to

A

1

B

a functional of x

C

`(cosecx)/(tanx)`

D

0

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int_(1//x)^(x) f(t)dt, (1)/(2) le x le 2x , then I is equal to

The integral int_(0)^(pi) x f(sinx )dx is equal to

If f(x) = sin(lim_(t rarr 0)(2x)/picot^(-1) (x/t^2)) , then int_(-(pi)/(2))^((pi)/(2))f(x) dx is equal to (where , x ne0 )

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

Let A_(1) = int_(0)^(x)(int_(0)^(u)f(t)dt) dt and A_(2) = int_(0)^(x)f(u).(x-u) then (A_(1))/(A_(2)) is equal to :

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

f(x) = sinx - sin2x in [0,pi]

Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b, "then " int_(0)^(a) f(x) dx +int_(0)^(b) f^(-1) (x) dx is equal to