Home
Class 12
MATHS
Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, ...

Q. `int_0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I`

A

`pi`

B

1

C

0

D

none of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(pi//2)(cos^2x)/(cos^2x+4sin^2x)dx

The value of int_(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

If I_n= int_0^pi (1-cos2nx)/(1-cos2x)dx or int_0^pi (sin^2nx)/(sin^2x) dx, show that I_1, I_2, I_3…………. are inA.P.

If I_1=int_0^(pi//2)(cos^2x)/(1+cos^2x)dx , I_2=int_0^(pi//2)(sin^2x)/(1+sin^2x)dx and I_3=int_0^(pi//2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx , then (a) I_1=I_2 > I_3 (b) I_3> I_1=I_2 (c) I_1=I_2=I_3 (d) none of these

Evaluate int_(0)^(2pi)(xcos^(2n)x)/(cos^(2n)x+sin^(2n)x)dx

int(1+cos 2x)/(1-cos 2x)dx

Evaluate: int_0^pi(xsinx)/(1+cos^2x)dx

Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to

IfI_1=int_0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I_2=int_0^(pi/2)(sin^2x)/(1+sin^2x)dx I_3=int_0^(pi/2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx ,t h e n I_1=I_2> I_3 (b) I_3> I_1=I_2 I_1=I_2=I_3 (d) none of these

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2