Home
Class 12
MATHS
The greater value of F(x)=overset(x)unde...

The greater value of `F(x)=overset(x)underset(1)int |t|dt` on the interval `[-1//2,1//2]`, is

A

`3//8`

B

`-3//8`

C

`1//2`

D

`-1//2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The greater value of (x) =int_(-1//2)^(x) |t|dt on the interval [-1//2,1//2] , is

The greater value of F(x)=int_(1)^(x) |t|dt on the interval [-1//2,1//2] , is

If f(x)=overset(x)underset(0)int(sint)/(t)dt,xgt0, then

For y=f(x)=overset(x)underset(0)int 2|t| dt, the tangent lines parallel to the bi-sector of the first quadrant angle are

If F(x) =(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(4) equals

The maximum value of f(x) =int_(0)^(1) t sin (x+pi t)dt is

If overset(4)underset(-1)int f(x)=4 and overset(4)underset(2)int (3-f(x))dx=7 , then the value of overset(-1)underset(2)int f(x)dx , is

Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)/(t))(1)/(t)dt , then

Let f(x) = int_(-2)^(x)|t + 1|dt , then

If overset(1)underset(0)int(sint)/(1+t)dt=alpha , then the value of the integral overset(4pi)underset(4pi-2)int("sin"(t)/(2))/(4pi+2-t)dt in terms of alpha is given by