Home
Class 12
MATHS
Match the following List I with List II ...

Match the following List I with List II List I List II P. `(lim)_(nvecoo)sum_(r=1)^n1/nsqrt((n+r)/(n-r))` `pi/2` Q. `(lim)_(nvecoo)[1/(sqrt(n^2-1))+1/(sqrt(n^2-1))+1/(sqrt(n^2-2^2))+1/(sqrt(n^2-(n-1)^2))]` 2. `pi/2+1` R. `(lim)_(nvecoo)((n !)/(n^n))^(1//n)` S. `pi` S. `(lim)_(hvec0^+)int_(-1)^1(h dx)/(h^2+x^2)` 4. `1/e`

A

`(pi)/(2)`

B

`sin^(-1)1`

C

`cos^(-1)(0)`

D

`2tan^(-1)1`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

Evaluate: ("lim")_(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))

l isum_(n-gtoo)sum_(r=1)^n1/(sqrt(4n^2-r^2))

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

underset(nrarroo)lim[(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+(1)/(sqrt(n^(2)-3^(2)))+...+(1)/(sqrt(n^(2)-(n-1)^(2)))]

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is