Home
Class 12
MATHS
If I=overset(1)underset(0)int (1)/(1+x^...

If `I=overset(1)underset(0)int (1)/(1+x^(pi//2))dx`then

A

`l lt(pi)/(4)`

B

`lgt(pi)/(4)`

C

`l lt log 2`

D

`l gtlog2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the integrals I_(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx,I_(2)=overset(1)underset(0)int e^(-x^(2))cos^(2)x dx,I_(3)=overset(1)underset(0)int e^(-x^(2//2))cos^(2)xdx and I_(4)=overset(1)underset(0)int e^(-x^(2//2))dx . The greatest of these integrals, is

overset(pi)underset(0)int (1)/(1+3^(cosx)) dx is equal to

If I_(1)=overset(1)underset(0)int 2^(x^(2)) dx, I_(2)=overset(1)underset(0)int 2^(x^(3)) dx, I_(3)=overset(2)underset(1)int 2^(x^(2))dx and I_(4)=overset(2)underset(1)int 2^(x^(3))dx then

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in the integral

If overset(1)underset(0)int(sint)/(1+t)dt=alpha , then the value of the integral overset(4pi)underset(4pi-2)int("sin"(t)/(2))/(4pi+2-t)dt in terms of alpha is given by

If overset(4)underset(-1)int f(x)=4 and overset(4)underset(2)int (3-f(x))dx=7 , then the value of overset(-1)underset(2)int f(x)dx , is

overset(pi//2)underset(-pi//2)int (cos x)/(1+e^(x))dx=

If I=int_0^(1) (1)/(1+x^(pi//2))dx , then\

The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equal to